已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Individual Prediction of Remission Based on Clinical Features Following Electroconvulsive Therapy

电休克疗法 重性抑郁障碍 神经影像学 萧条(经济学) 双相情感障碍 抗抑郁药 心理学 医学 精神科 内科学 心情 焦虑 宏观经济学 经济 认知
作者
Koji Nakajima,Akihiro Takamiya,Takahito Uchida,Satoshi Kudo,Hana Nishida,Fusaka Minami,Yasuharu Yamamoto,Bun Yamagata,Masaru Mimura,Jinichi Hirano
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:83 (5) 被引量:5
标识
DOI:10.4088/jcp.21m14293
摘要

Objective: Previous prediction models for electroconvulsive therapy (ECT) responses have predominantly been based on neuroimaging data, which has precluded widespread application for severe cases in real-world clinical settings. The aims of this study were (1) to build a clinically useful prediction model for ECT remission based solely on clinical information and (2) to identify influential features in the prediction model.Methods: We conducted a retrospective chart review to collect data (registered between April 2012 and March 2019) from individuals with depression (unipolar major depressive disorder or bipolar disorder) diagnosed via DSM-IV-TR criteria who received ECT at Keio University Hospital. Clinical characteristics were used as candidate features. A light gradient boosting machine was used for prediction, and 5-fold cross-validation was performed to validate our prediction model.Results: In total, 177 patients with depression underwent ECT during the study period. The remission rate was 63%. Our model predicted individual patient outcomes with 71% accuracy (sensitivity, 86%; specificity, 46%). A shorter duration of the current episodes, lower baseline severity, higher dose of antidepressant medications before ECT, and lower body mass index were identified as important features for predicting remission following ECT.Conclusions: We developed a prediction model for ECT remission based solely on clinical information. Our prediction model demonstrated accuracy comparable to that in previous reports. Our model suggests that introducing ECT earlier in the treatment course may contribute to improvements in clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vv发布了新的文献求助10
2秒前
鹿飞完成签到,获得积分10
2秒前
3秒前
coraline26发布了新的文献求助10
3秒前
4秒前
5秒前
7秒前
skywalker发布了新的文献求助10
8秒前
8秒前
joe完成签到 ,获得积分0
10秒前
jiaobuyimi发布了新的文献求助10
11秒前
iris发布了新的文献求助10
14秒前
skywalker完成签到,获得积分10
15秒前
coraline26完成签到,获得积分10
16秒前
压缩完成签到 ,获得积分10
17秒前
jiaobuyimi完成签到,获得积分10
22秒前
26秒前
不与仙同完成签到 ,获得积分10
27秒前
31秒前
iris完成签到,获得积分20
34秒前
只如初完成签到,获得积分10
36秒前
36秒前
芊寻关注了科研通微信公众号
36秒前
37秒前
Tendency完成签到 ,获得积分10
39秒前
范白容完成签到 ,获得积分0
39秒前
淡然的书本完成签到,获得积分10
42秒前
42秒前
张张完成签到 ,获得积分10
43秒前
44秒前
Morris完成签到,获得积分10
46秒前
Morris发布了新的文献求助10
48秒前
我有乖乖吃饭完成签到,获得积分20
52秒前
李健应助淡然的书本采纳,获得10
54秒前
半夏完成签到 ,获得积分10
54秒前
nanfang完成签到 ,获得积分10
1分钟前
xiaodengdream完成签到,获得积分10
1分钟前
1分钟前
MoonFlows完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150464
求助须知:如何正确求助?哪些是违规求助? 2801801
关于积分的说明 7845765
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727