Machine learning and sentiment analysis: Projecting bank insolvency risk

资不抵债 破产预测 破产 样品(材料) 公制(单位) 精算学 计量经济学 决策树 计算机科学 证券交易所 人工智能 经济 财务 运营管理 化学 色谱法
作者
Diego Pitta de Jesus,Cássio da Nóbrega Besarria
出处
期刊:Research in Economics [Elsevier BV]
卷期号:77 (2): 226-238 被引量:5
标识
DOI:10.1016/j.rie.2023.03.001
摘要

The main motivation of this paper is to use machine learning techniques to build a new insolvency risk rating metric for banks traded on Brazilian stock exchange. Then, a set of prediction models will be used to project the risk rating of these institutions. Conventionally, the literature analyzes bank insolvency risk from accounting data and macroeconomic variables. In addition to these variables, this paper will construct a series of bank institution manager sentiment, via quarterly reports (ITR), and this will be used to improve the accuracy of bank risk predictions. The results indicate that the bank risk classification, via the k-means algorithm, was able to classify 17% of the sample into the highest risk group (1), while 83% of the sample was in the lowest bankruptcy risk group (0). Using the Z-score metric, we found that 65% of the sample is in the low-risk group, and 35% of the sample is in the high-risk group. Thus, the k-means algorithm is more rigorous in classifying a bank in the highest risk category. Next we used the data already described to project the risk of bank insolvency. The results of this step showed that the decision tree model performed the best for the test sample. In addition, it was found that the inclusion of the bank sentiment variable was able to improve the performance of the prediction models, especially, when bank sentiment is constructed from a time-varying dictionary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
娃哈哈发布了新的文献求助10
1秒前
斯文问旋完成签到,获得积分10
1秒前
Owen应助可靠的南露采纳,获得10
1秒前
1秒前
echo完成签到,获得积分20
1秒前
细心梦竹完成签到,获得积分10
2秒前
genau000完成签到 ,获得积分10
3秒前
UMA完成签到,获得积分10
4秒前
yjfff完成签到,获得积分10
4秒前
修士完成签到 ,获得积分10
4秒前
wanci应助asparagine采纳,获得10
4秒前
英俊的铭应助斯文问旋采纳,获得10
5秒前
包容若风完成签到 ,获得积分10
5秒前
Ari_Kun完成签到 ,获得积分10
5秒前
有一颗卤蛋完成签到,获得积分10
6秒前
WEIWEI完成签到,获得积分10
6秒前
6秒前
vikoel完成签到,获得积分10
6秒前
6秒前
xzf1996完成签到,获得积分10
7秒前
泥撑完成签到,获得积分10
7秒前
娃哈哈完成签到,获得积分10
7秒前
无心的仙人掌完成签到,获得积分10
8秒前
yznfly应助棋士采纳,获得30
8秒前
8秒前
笨蛋没烦恼完成签到,获得积分10
8秒前
8秒前
桐桐应助健忘的柠檬采纳,获得10
9秒前
小刺猬完成签到,获得积分10
9秒前
桐桐应助xjdb123采纳,获得10
9秒前
10秒前
11秒前
SYLH应助hkh采纳,获得10
11秒前
SYLH应助hkh采纳,获得10
11秒前
SYLH应助hkh采纳,获得10
11秒前
科研通AI2S应助hkh采纳,获得10
11秒前
孙友浩完成签到,获得积分10
11秒前
SYLH应助hkh采纳,获得10
11秒前
欧阳静芙完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124