Machine learning and sentiment analysis: Projecting bank insolvency risk

资不抵债 破产预测 破产 样品(材料) 公制(单位) 精算学 计量经济学 决策树 计算机科学 证券交易所 人工智能 经济 财务 运营管理 色谱法 化学
作者
Diego Pitta de Jesus,Cássio da Nóbrega Besarria
出处
期刊:Research in Economics [Elsevier BV]
卷期号:77 (2): 226-238 被引量:5
标识
DOI:10.1016/j.rie.2023.03.001
摘要

The main motivation of this paper is to use machine learning techniques to build a new insolvency risk rating metric for banks traded on Brazilian stock exchange. Then, a set of prediction models will be used to project the risk rating of these institutions. Conventionally, the literature analyzes bank insolvency risk from accounting data and macroeconomic variables. In addition to these variables, this paper will construct a series of bank institution manager sentiment, via quarterly reports (ITR), and this will be used to improve the accuracy of bank risk predictions. The results indicate that the bank risk classification, via the k-means algorithm, was able to classify 17% of the sample into the highest risk group (1), while 83% of the sample was in the lowest bankruptcy risk group (0). Using the Z-score metric, we found that 65% of the sample is in the low-risk group, and 35% of the sample is in the high-risk group. Thus, the k-means algorithm is more rigorous in classifying a bank in the highest risk category. Next we used the data already described to project the risk of bank insolvency. The results of this step showed that the decision tree model performed the best for the test sample. In addition, it was found that the inclusion of the bank sentiment variable was able to improve the performance of the prediction models, especially, when bank sentiment is constructed from a time-varying dictionary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
孤独含蕾完成签到,获得积分10
1秒前
2秒前
2秒前
hq发布了新的文献求助10
2秒前
奋斗小真完成签到 ,获得积分10
4秒前
4秒前
会飞的猪完成签到,获得积分20
5秒前
expuery完成签到,获得积分10
5秒前
小满完成签到,获得积分10
6秒前
6秒前
orixero应助hhhee采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
NexusExplorer应助cgjj采纳,获得10
9秒前
CodeCraft应助fxx采纳,获得10
9秒前
深情安青应助如你所liao采纳,获得10
9秒前
金牌追梦人关注了科研通微信公众号
10秒前
10秒前
浮游应助沙耶酱采纳,获得10
10秒前
10秒前
11秒前
开心最重要完成签到,获得积分10
11秒前
stacy发布了新的文献求助10
11秒前
顺利秋灵发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
Ss发布了新的文献求助10
13秒前
英俊的铭应助彩色方盒采纳,获得10
13秒前
13秒前
徐恭完成签到 ,获得积分10
13秒前
juju816完成签到,获得积分10
14秒前
年轻丸子发布了新的文献求助10
14秒前
14秒前
尊敬凝荷完成签到,获得积分10
15秒前
cing发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355