亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning and sentiment analysis: Projecting bank insolvency risk

资不抵债 破产预测 破产 样品(材料) 公制(单位) 精算学 计量经济学 决策树 计算机科学 证券交易所 人工智能 经济 财务 运营管理 色谱法 化学
作者
Diego Pitta de Jesus,Cássio da Nóbrega Besarria
出处
期刊:Research in Economics [Elsevier]
卷期号:77 (2): 226-238 被引量:5
标识
DOI:10.1016/j.rie.2023.03.001
摘要

The main motivation of this paper is to use machine learning techniques to build a new insolvency risk rating metric for banks traded on Brazilian stock exchange. Then, a set of prediction models will be used to project the risk rating of these institutions. Conventionally, the literature analyzes bank insolvency risk from accounting data and macroeconomic variables. In addition to these variables, this paper will construct a series of bank institution manager sentiment, via quarterly reports (ITR), and this will be used to improve the accuracy of bank risk predictions. The results indicate that the bank risk classification, via the k-means algorithm, was able to classify 17% of the sample into the highest risk group (1), while 83% of the sample was in the lowest bankruptcy risk group (0). Using the Z-score metric, we found that 65% of the sample is in the low-risk group, and 35% of the sample is in the high-risk group. Thus, the k-means algorithm is more rigorous in classifying a bank in the highest risk category. Next we used the data already described to project the risk of bank insolvency. The results of this step showed that the decision tree model performed the best for the test sample. In addition, it was found that the inclusion of the bank sentiment variable was able to improve the performance of the prediction models, especially, when bank sentiment is constructed from a time-varying dictionary.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
1秒前
zhangweny发布了新的文献求助10
1秒前
5秒前
5秒前
6秒前
研友_VZG7GZ应助cc采纳,获得10
6秒前
7秒前
ViVi发布了新的文献求助10
11秒前
天注定发布了新的文献求助10
11秒前
12秒前
12秒前
cc发布了新的文献求助10
13秒前
星辰大海应助BeanHahn采纳,获得10
13秒前
zhuxiaoyue完成签到,获得积分10
16秒前
19秒前
28秒前
28秒前
桐桐应助喝可乐也很好采纳,获得20
31秒前
君兰完成签到,获得积分10
32秒前
33秒前
35秒前
slby完成签到 ,获得积分10
36秒前
君兰发布了新的文献求助10
38秒前
友好碧完成签到 ,获得积分10
40秒前
乐观的月亮完成签到,获得积分10
45秒前
45秒前
zhuxiaoyue发布了新的文献求助10
45秒前
打打应助辉辉采纳,获得10
45秒前
美美完成签到,获得积分20
47秒前
50秒前
52秒前
54秒前
BeanHahn发布了新的文献求助10
54秒前
55秒前
阿离完成签到,获得积分10
56秒前
58秒前
无题完成签到,获得积分10
58秒前
辉辉发布了新的文献求助10
59秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671