Machine learning and sentiment analysis: Projecting bank insolvency risk

资不抵债 破产预测 破产 样品(材料) 公制(单位) 精算学 计量经济学 决策树 计算机科学 证券交易所 人工智能 经济 财务 运营管理 色谱法 化学
作者
Diego Pitta de Jesus,Cássio da Nóbrega Besarria
出处
期刊:Research in Economics [Elsevier]
卷期号:77 (2): 226-238 被引量:5
标识
DOI:10.1016/j.rie.2023.03.001
摘要

The main motivation of this paper is to use machine learning techniques to build a new insolvency risk rating metric for banks traded on Brazilian stock exchange. Then, a set of prediction models will be used to project the risk rating of these institutions. Conventionally, the literature analyzes bank insolvency risk from accounting data and macroeconomic variables. In addition to these variables, this paper will construct a series of bank institution manager sentiment, via quarterly reports (ITR), and this will be used to improve the accuracy of bank risk predictions. The results indicate that the bank risk classification, via the k-means algorithm, was able to classify 17% of the sample into the highest risk group (1), while 83% of the sample was in the lowest bankruptcy risk group (0). Using the Z-score metric, we found that 65% of the sample is in the low-risk group, and 35% of the sample is in the high-risk group. Thus, the k-means algorithm is more rigorous in classifying a bank in the highest risk category. Next we used the data already described to project the risk of bank insolvency. The results of this step showed that the decision tree model performed the best for the test sample. In addition, it was found that the inclusion of the bank sentiment variable was able to improve the performance of the prediction models, especially, when bank sentiment is constructed from a time-varying dictionary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文静曼发布了新的文献求助10
刚刚
jiaolulu完成签到,获得积分10
刚刚
优秀的枫完成签到,获得积分20
刚刚
刚刚
美嘉美完成签到,获得积分10
刚刚
1秒前
炙热芝完成签到,获得积分10
2秒前
嘒彼小星完成签到 ,获得积分10
2秒前
2秒前
哭泣的翠丝完成签到,获得积分10
3秒前
3秒前
jennyyu完成签到,获得积分10
3秒前
terence完成签到,获得积分10
3秒前
4秒前
4秒前
HopeStar发布了新的文献求助10
4秒前
马保国123发布了新的文献求助10
4秒前
Hello应助蓝莓松饼采纳,获得10
5秒前
5秒前
优秀的枫发布了新的文献求助10
5秒前
5秒前
KDC完成签到,获得积分10
5秒前
MuMu完成签到,获得积分10
6秒前
6秒前
Yana1311完成签到,获得积分10
7秒前
lkc发布了新的文献求助10
7秒前
大气飞丹完成签到 ,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
yu完成签到 ,获得积分10
8秒前
Lvj发布了新的文献求助10
8秒前
英俊的铭应助lanjq兰坚强采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
含蓄的鹤发布了新的文献求助10
9秒前
9秒前
受伤访波完成签到,获得积分10
10秒前
香蕉觅云应助亻鱼采纳,获得10
10秒前
欢欢发布了新的文献求助10
10秒前
慕青应助研友_Z1WvKL采纳,获得10
10秒前
10秒前
多情怜蕾完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759