Dynamic adaptive spatio-temporal graph neural network for multi-node offshore wind speed forecasting

计算机科学 图形 风速 动态数据 空间相关性 理论计算机科学 电信 物理 气象学 程序设计语言
作者
Ziheng Gao,Zhuolin Li,Lingyu Xu,Jie Yu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:141: 110294-110294 被引量:11
标识
DOI:10.1016/j.asoc.2023.110294
摘要

Multi-node offshore wind speed forecasting is a challenging task due to the complex dynamic spatial dependencies and highly nonlinear temporal dynamics present in the ocean. As deep learning advances, graph neural networks (GNNs) have great potential to capture spatial dependencies in ocean meteorology. However, existing GNN models usually use predefined or learned static graphs. They lack the ability to model dynamic spatial associations, which can limit the performance of GNNs. In this paper, we propose a dynamic adaptive spatio-temporal graph neural network (DASTGN) that uses dynamic graph convolution (DGCN) to capture dynamic spatial dependencies in offshore wind speed data. Based on the assumption that not only long-term static associations but also short-term dynamic associations exist in the spatial domain and that the importance of these two associations is different, we propose a dynamic adaptive graph generation module to generate static and dynamic graphs to model these two associations. Meanwhile, a matrix fusion mechanism is proposed to fuse them into the optimal dynamic graph, which is fed into the DGCN module. We employ a temporal convolution module to capture the nonlinear temporal dependencies. Finally, the above modules are integrated into a dedicated spatio-temporal convolution module to predict wind speed. Extensive experiments on real wind speed datasets in Chinese seas showed that the DASTGN improved the performance of the optimal baseline model by 3.05% and 3.69% in terms of the MAE and RMSE, respectively. To demonstrate that the DASTGN can effectively model dynamic spatial associations, the generated graph structure is visualized and analyzed. Finally, we present policy implications aimed at enhancing the security of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wang完成签到,获得积分10
3秒前
neao完成签到,获得积分10
3秒前
第二个账号完成签到 ,获得积分10
4秒前
成就觅翠发布了新的文献求助10
4秒前
4秒前
刘小小123发布了新的文献求助10
6秒前
20231125完成签到,获得积分10
7秒前
想毕业的小橙子完成签到,获得积分10
13秒前
俊秀的半雪完成签到,获得积分10
13秒前
ren完成签到 ,获得积分10
14秒前
14秒前
淡淡代玉发布了新的文献求助20
16秒前
CipherSage应助萧一采纳,获得10
16秒前
Rollin完成签到 ,获得积分10
17秒前
科目三应助Lebranium采纳,获得10
17秒前
爆米花应助daodao采纳,获得10
18秒前
19秒前
hms完成签到 ,获得积分10
21秒前
psychedeng完成签到,获得积分10
22秒前
22秒前
22秒前
林白生完成签到,获得积分10
23秒前
刘小小123完成签到,获得积分20
23秒前
zm发布了新的文献求助10
25秒前
愉快凡旋发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
萱萱发布了新的文献求助10
27秒前
29秒前
加厚加大完成签到 ,获得积分10
29秒前
Lebranium发布了新的文献求助10
30秒前
青羽落霞完成签到 ,获得积分10
30秒前
传统的孤丝完成签到 ,获得积分10
31秒前
iOhyeye23发布了新的文献求助10
31秒前
32秒前
明明发布了新的文献求助10
32秒前
无情的代柔完成签到 ,获得积分10
33秒前
daodao发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975