Use of ATR-FTIR spectroscopy to differentiate between cirrhotic/non-cirrhotic HCV patients

肝硬化 多元统计 医学 多元分析 人工智能 胃肠病学 支持向量机 内科学 模式识别(心理学) 机器学习 计算机科学
作者
Salmann Ali,Ammara Naveed,Irshad Hussain,Javaria Qazi
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103529-103529 被引量:3
标识
DOI:10.1016/j.pdpdt.2023.103529
摘要

Conventional techniques to diagnose (HCV) and assess non-cirrhotic/cirrhotic status of the patient for appropriate treatment regime are expensive and invasive. Present available diagnostic tests are expensive as they include multiple screening steps. Therefore, there is a need of cost-effective, less time consuming and minimally invasive alternative diagnostic approaches can be used for effective screening. We propose that (ATR-FTIR) in conjunction with (PCA-LDA),(PCA-QDA) and (SVM) multivariate algorithms can be used as a sensitive tool for detection of HCV infection and to assess non-cirrhotic/cirrhotic status of patients. We used 105 sera samples, of which, 55 were from healthy and 50 were from HCV positive individuals. These 50 HCV positive patients were further classified into cirrhotic and non-cirrhotic categories using serum markers and imaging techniques. These samples were freeze dried prior to spectral acquisition then multivariate data classification algorithms were employed to classify these sample types. PCA-LDA and SVM model computed the diagnostic accuracy of 100% for detection of HCV infection. To further classify the non-cirrhotic/cirrhotic status of a patient, diagnostic accuracy of 90.91% for PCA-QDA and 100% for SVM was observed. Internal and external validation for SVM based classifications observed 100% sensitivity and specificity. The confusion matrix generated by PCA-LDA model computed the validation and calibration accuracy showed 100% sensitivity and specificity, by using 2 PCs for HCV infected and healthy individuals. However, when the PCA QDA analysis was done to classify the non-cirrhotic sera samples from cirrhotic sera samples the diagnostic accuracy achieved was 90.91% based on 7 PC's. SVM was also employed for classification and developed model showed the best results with 100% sensitivity and specificity when external validation was applied. This study provides an initial insight that ATR-FTIR spectroscopy in conjugation with multivariate data classification tools holds a potentialnot onlytoeffectively diagnosis HCV infection but also to assess non-cirrhotic/cirrhotic status of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助小吕采纳,获得10
1秒前
1秒前
CG2021发布了新的文献求助10
1秒前
du完成签到,获得积分10
1秒前
1秒前
追寻机器猫完成签到,获得积分10
1秒前
支邑发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助虾滑采纳,获得10
2秒前
科研通AI2S应助Yep采纳,获得50
2秒前
鲁大师完成签到 ,获得积分10
2秒前
2秒前
2秒前
有一瓶发布了新的文献求助10
3秒前
宜城发布了新的文献求助10
4秒前
toey完成签到,获得积分10
4秒前
4秒前
4秒前
哎呀疼发布了新的文献求助10
4秒前
4秒前
orixero应助王QQ采纳,获得10
6秒前
du发布了新的文献求助10
6秒前
美丽梦桃发布了新的文献求助50
6秒前
Julie发布了新的文献求助10
7秒前
7秒前
可爱的函函应助顺利觅夏采纳,获得30
8秒前
天天快乐应助舒心的青槐采纳,获得10
9秒前
dawei发布了新的文献求助10
9秒前
菠萝蜜发布了新的文献求助10
9秒前
倾落完成签到,获得积分10
10秒前
顺心若剑完成签到,获得积分10
10秒前
健忘的翠梅完成签到,获得积分20
11秒前
完美世界应助ZHAOyifan采纳,获得10
11秒前
t东流水发布了新的文献求助10
12秒前
12秒前
shentaii发布了新的文献求助30
12秒前
cindywang107完成签到,获得积分10
12秒前
qinkoko发布了新的文献求助10
12秒前
哈哈哈发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410746
求助须知:如何正确求助?哪些是违规求助? 3014215
关于积分的说明 8862656
捐赠科研通 2701720
什么是DOI,文献DOI怎么找? 1481190
科研通“疑难数据库(出版商)”最低求助积分说明 684739
邀请新用户注册赠送积分活动 679247