Use of ATR-FTIR spectroscopy to differentiate between cirrhotic/non-cirrhotic HCV patients

肝硬化 多元统计 医学 多元分析 人工智能 胃肠病学 支持向量机 内科学 模式识别(心理学) 机器学习 计算机科学
作者
Salmann Ali,Ammara Naveed,Irshad Hussain,Javaria Qazi
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103529-103529 被引量:3
标识
DOI:10.1016/j.pdpdt.2023.103529
摘要

Conventional techniques to diagnose (HCV) and assess non-cirrhotic/cirrhotic status of the patient for appropriate treatment regime are expensive and invasive. Present available diagnostic tests are expensive as they include multiple screening steps. Therefore, there is a need of cost-effective, less time consuming and minimally invasive alternative diagnostic approaches can be used for effective screening. We propose that (ATR-FTIR) in conjunction with (PCA-LDA),(PCA-QDA) and (SVM) multivariate algorithms can be used as a sensitive tool for detection of HCV infection and to assess non-cirrhotic/cirrhotic status of patients. We used 105 sera samples, of which, 55 were from healthy and 50 were from HCV positive individuals. These 50 HCV positive patients were further classified into cirrhotic and non-cirrhotic categories using serum markers and imaging techniques. These samples were freeze dried prior to spectral acquisition then multivariate data classification algorithms were employed to classify these sample types. PCA-LDA and SVM model computed the diagnostic accuracy of 100% for detection of HCV infection. To further classify the non-cirrhotic/cirrhotic status of a patient, diagnostic accuracy of 90.91% for PCA-QDA and 100% for SVM was observed. Internal and external validation for SVM based classifications observed 100% sensitivity and specificity. The confusion matrix generated by PCA-LDA model computed the validation and calibration accuracy showed 100% sensitivity and specificity, by using 2 PCs for HCV infected and healthy individuals. However, when the PCA QDA analysis was done to classify the non-cirrhotic sera samples from cirrhotic sera samples the diagnostic accuracy achieved was 90.91% based on 7 PC's. SVM was also employed for classification and developed model showed the best results with 100% sensitivity and specificity when external validation was applied. This study provides an initial insight that ATR-FTIR spectroscopy in conjugation with multivariate data classification tools holds a potentialnot onlytoeffectively diagnosis HCV infection but also to assess non-cirrhotic/cirrhotic status of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Qian_Xu完成签到,获得积分10
1秒前
1秒前
小璐发布了新的文献求助10
2秒前
linjiebro发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
怡然幻梅完成签到,获得积分10
5秒前
5秒前
田様应助张力航采纳,获得10
5秒前
香蕉觅云应助飘逸的凝云采纳,获得10
5秒前
飞云发布了新的文献求助10
5秒前
GingerF应助Wei采纳,获得100
5秒前
6秒前
Hunter完成签到,获得积分10
6秒前
7秒前
英姑应助小璐采纳,获得30
7秒前
8秒前
8秒前
9秒前
10秒前
Wy21完成签到 ,获得积分10
10秒前
10秒前
wx0816发布了新的文献求助10
11秒前
dayu大雨发布了新的文献求助10
11秒前
正直敏发布了新的文献求助10
11秒前
ljc完成签到,获得积分10
11秒前
憨憨发布了新的文献求助10
12秒前
独自受罪发布了新的文献求助10
12秒前
usr123完成签到 ,获得积分10
12秒前
咕咕鸡完成签到,获得积分20
12秒前
NULIFENDOU发布了新的文献求助10
12秒前
13秒前
才染完成签到 ,获得积分10
14秒前
万能图书馆应助犹豫慕梅采纳,获得10
17秒前
18秒前
tleeny完成签到,获得积分20
18秒前
L晨晨完成签到 ,获得积分10
18秒前
wdl完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304