Use of ATR-FTIR spectroscopy to differentiate between cirrhotic/non-cirrhotic HCV patients

肝硬化 多元统计 医学 多元分析 人工智能 胃肠病学 支持向量机 内科学 模式识别(心理学) 机器学习 计算机科学
作者
Salmann Ali,Ammara Naveed,Irshad Hussain,Javaria Qazi
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103529-103529 被引量:3
标识
DOI:10.1016/j.pdpdt.2023.103529
摘要

Conventional techniques to diagnose (HCV) and assess non-cirrhotic/cirrhotic status of the patient for appropriate treatment regime are expensive and invasive. Present available diagnostic tests are expensive as they include multiple screening steps. Therefore, there is a need of cost-effective, less time consuming and minimally invasive alternative diagnostic approaches can be used for effective screening. We propose that (ATR-FTIR) in conjunction with (PCA-LDA),(PCA-QDA) and (SVM) multivariate algorithms can be used as a sensitive tool for detection of HCV infection and to assess non-cirrhotic/cirrhotic status of patients. We used 105 sera samples, of which, 55 were from healthy and 50 were from HCV positive individuals. These 50 HCV positive patients were further classified into cirrhotic and non-cirrhotic categories using serum markers and imaging techniques. These samples were freeze dried prior to spectral acquisition then multivariate data classification algorithms were employed to classify these sample types. PCA-LDA and SVM model computed the diagnostic accuracy of 100% for detection of HCV infection. To further classify the non-cirrhotic/cirrhotic status of a patient, diagnostic accuracy of 90.91% for PCA-QDA and 100% for SVM was observed. Internal and external validation for SVM based classifications observed 100% sensitivity and specificity. The confusion matrix generated by PCA-LDA model computed the validation and calibration accuracy showed 100% sensitivity and specificity, by using 2 PCs for HCV infected and healthy individuals. However, when the PCA QDA analysis was done to classify the non-cirrhotic sera samples from cirrhotic sera samples the diagnostic accuracy achieved was 90.91% based on 7 PC's. SVM was also employed for classification and developed model showed the best results with 100% sensitivity and specificity when external validation was applied. This study provides an initial insight that ATR-FTIR spectroscopy in conjugation with multivariate data classification tools holds a potentialnot onlytoeffectively diagnosis HCV infection but also to assess non-cirrhotic/cirrhotic status of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助房东的影子采纳,获得10
1秒前
1秒前
yang发布了新的文献求助10
1秒前
zz完成签到,获得积分10
1秒前
CC完成签到 ,获得积分10
2秒前
2秒前
Cloud发布了新的文献求助30
3秒前
小汁儿发布了新的文献求助30
3秒前
3秒前
王晓静发布了新的文献求助10
4秒前
5秒前
善学以致用应助fff123采纳,获得10
5秒前
6秒前
李健的小迷弟应助YiWei采纳,获得10
6秒前
瓜呱完成签到 ,获得积分10
7秒前
斯文败类应助英勇羿采纳,获得10
7秒前
cctv18应助市民7采纳,获得10
8秒前
CC关注了科研通微信公众号
8秒前
8秒前
神勇松发布了新的文献求助10
9秒前
Jimmy完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
SciGPT应助栗子采纳,获得10
12秒前
yang完成签到,获得积分10
12秒前
Mars1998发布了新的文献求助30
13秒前
爆米花应助称心的语芙采纳,获得10
13秒前
cici发布了新的文献求助10
13秒前
FCL发布了新的文献求助10
14秒前
槛外人完成签到,获得积分10
14秒前
小汁儿完成签到,获得积分10
14秒前
和腻u完成签到,获得积分10
14秒前
有星星的小路完成签到,获得积分10
14秒前
封典完成签到,获得积分10
15秒前
15秒前
慕青应助平淡的半青采纳,获得10
16秒前
香蕉觅云应助明明明采纳,获得10
16秒前
小飞发布了新的文献求助10
17秒前
甜叶菊发布了新的文献求助10
17秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916