已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of ATR-FTIR spectroscopy to differentiate between cirrhotic/non-cirrhotic HCV patients

肝硬化 多元统计 医学 多元分析 人工智能 胃肠病学 支持向量机 内科学 模式识别(心理学) 机器学习 计算机科学
作者
Salmann Ali,Ammara Naveed,Irshad Hussain,Javaria Qazi
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103529-103529 被引量:3
标识
DOI:10.1016/j.pdpdt.2023.103529
摘要

Conventional techniques to diagnose (HCV) and assess non-cirrhotic/cirrhotic status of the patient for appropriate treatment regime are expensive and invasive. Present available diagnostic tests are expensive as they include multiple screening steps. Therefore, there is a need of cost-effective, less time consuming and minimally invasive alternative diagnostic approaches can be used for effective screening. We propose that (ATR-FTIR) in conjunction with (PCA-LDA),(PCA-QDA) and (SVM) multivariate algorithms can be used as a sensitive tool for detection of HCV infection and to assess non-cirrhotic/cirrhotic status of patients. We used 105 sera samples, of which, 55 were from healthy and 50 were from HCV positive individuals. These 50 HCV positive patients were further classified into cirrhotic and non-cirrhotic categories using serum markers and imaging techniques. These samples were freeze dried prior to spectral acquisition then multivariate data classification algorithms were employed to classify these sample types. PCA-LDA and SVM model computed the diagnostic accuracy of 100% for detection of HCV infection. To further classify the non-cirrhotic/cirrhotic status of a patient, diagnostic accuracy of 90.91% for PCA-QDA and 100% for SVM was observed. Internal and external validation for SVM based classifications observed 100% sensitivity and specificity. The confusion matrix generated by PCA-LDA model computed the validation and calibration accuracy showed 100% sensitivity and specificity, by using 2 PCs for HCV infected and healthy individuals. However, when the PCA QDA analysis was done to classify the non-cirrhotic sera samples from cirrhotic sera samples the diagnostic accuracy achieved was 90.91% based on 7 PC's. SVM was also employed for classification and developed model showed the best results with 100% sensitivity and specificity when external validation was applied. This study provides an initial insight that ATR-FTIR spectroscopy in conjugation with multivariate data classification tools holds a potentialnot onlytoeffectively diagnosis HCV infection but also to assess non-cirrhotic/cirrhotic status of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
风行域完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
爆米花应助友好谷蓝采纳,获得10
2秒前
西吴完成签到 ,获得积分10
2秒前
焰古完成签到 ,获得积分10
2秒前
无情的问枫完成签到 ,获得积分10
2秒前
涵涵涵hh完成签到 ,获得积分10
3秒前
lijunliang完成签到,获得积分10
4秒前
hh1106完成签到 ,获得积分20
4秒前
4秒前
minkeyantong完成签到 ,获得积分10
4秒前
4秒前
kkpzc完成签到 ,获得积分10
6秒前
粗犷的灵松完成签到,获得积分10
6秒前
无极微光应助开朗的lala采纳,获得20
6秒前
7秒前
yangjian完成签到,获得积分10
7秒前
洁净的小熊猫完成签到,获得积分10
7秒前
小方完成签到,获得积分10
8秒前
毛爱民发布了新的文献求助10
9秒前
激昂的吐司完成签到,获得积分20
11秒前
12秒前
666发布了新的文献求助10
13秒前
科研小白完成签到 ,获得积分10
18秒前
王者归来完成签到,获得积分10
18秒前
薄荷源星球完成签到 ,获得积分10
18秒前
cangmingzi完成签到,获得积分10
20秒前
酷波er应助激昂的吐司采纳,获得20
21秒前
ZHL应助Bellis采纳,获得20
22秒前
奋斗的绝悟完成签到,获得积分10
22秒前
自信书竹完成签到 ,获得积分10
22秒前
wanci应助可可钳采纳,获得10
23秒前
美丽的若云完成签到 ,获得积分10
26秒前
27秒前
27秒前
li完成签到 ,获得积分10
29秒前
一粟完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759