已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of ATR-FTIR spectroscopy to differentiate between cirrhotic/non-cirrhotic HCV patients

肝硬化 多元统计 医学 多元分析 人工智能 胃肠病学 支持向量机 内科学 模式识别(心理学) 机器学习 计算机科学
作者
Salmann Ali,Ammara Naveed,Irshad Hussain,Javaria Qazi
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103529-103529 被引量:3
标识
DOI:10.1016/j.pdpdt.2023.103529
摘要

Conventional techniques to diagnose (HCV) and assess non-cirrhotic/cirrhotic status of the patient for appropriate treatment regime are expensive and invasive. Present available diagnostic tests are expensive as they include multiple screening steps. Therefore, there is a need of cost-effective, less time consuming and minimally invasive alternative diagnostic approaches can be used for effective screening. We propose that (ATR-FTIR) in conjunction with (PCA-LDA),(PCA-QDA) and (SVM) multivariate algorithms can be used as a sensitive tool for detection of HCV infection and to assess non-cirrhotic/cirrhotic status of patients. We used 105 sera samples, of which, 55 were from healthy and 50 were from HCV positive individuals. These 50 HCV positive patients were further classified into cirrhotic and non-cirrhotic categories using serum markers and imaging techniques. These samples were freeze dried prior to spectral acquisition then multivariate data classification algorithms were employed to classify these sample types. PCA-LDA and SVM model computed the diagnostic accuracy of 100% for detection of HCV infection. To further classify the non-cirrhotic/cirrhotic status of a patient, diagnostic accuracy of 90.91% for PCA-QDA and 100% for SVM was observed. Internal and external validation for SVM based classifications observed 100% sensitivity and specificity. The confusion matrix generated by PCA-LDA model computed the validation and calibration accuracy showed 100% sensitivity and specificity, by using 2 PCs for HCV infected and healthy individuals. However, when the PCA QDA analysis was done to classify the non-cirrhotic sera samples from cirrhotic sera samples the diagnostic accuracy achieved was 90.91% based on 7 PC's. SVM was also employed for classification and developed model showed the best results with 100% sensitivity and specificity when external validation was applied. This study provides an initial insight that ATR-FTIR spectroscopy in conjugation with multivariate data classification tools holds a potentialnot onlytoeffectively diagnosis HCV infection but also to assess non-cirrhotic/cirrhotic status of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
肖宇发布了新的文献求助10
3秒前
巫马尔槐完成签到,获得积分10
3秒前
SarahG完成签到,获得积分10
5秒前
6秒前
科研通AI6应助AAA建材王哥采纳,获得10
10秒前
10秒前
黄晓完成签到,获得积分10
11秒前
wen发布了新的文献求助10
13秒前
ilovelr发布了新的文献求助50
14秒前
fiife应助千与采纳,获得10
14秒前
17秒前
须眉交白完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
傲娇的小松鼠完成签到 ,获得积分10
20秒前
YYY发布了新的文献求助10
22秒前
hnx1005完成签到 ,获得积分10
23秒前
Ttttsyu发布了新的文献求助10
23秒前
奥特曼发布了新的文献求助10
23秒前
研友_LXjdOZ发布了新的文献求助20
23秒前
24秒前
RC发布了新的文献求助10
24秒前
完美世界应助yu采纳,获得10
24秒前
欢喜烧鹅发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
听宇完成签到,获得积分20
25秒前
惕守应助不信人间有白头采纳,获得10
25秒前
26秒前
Jojo发布了新的文献求助10
27秒前
悬铃木发布了新的文献求助10
28秒前
WWW发布了新的文献求助10
29秒前
科研通AI6应助橘猫123456采纳,获得10
29秒前
现代的雪枫完成签到,获得积分10
29秒前
张凌发布了新的文献求助10
29秒前
黄震洋完成签到,获得积分10
30秒前
leslie应助gqz采纳,获得20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558