A General Methodology for Technology Opportunity Discovery Based on Opportunity Evaluation and Optimization

计算机科学 蚁群优化算法 数据科学 管理科学 知识管理 工程类 人工智能
作者
Haiying Ren,Luyao Zhang,Qian Wang
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 6725-6740 被引量:4
标识
DOI:10.1109/tem.2023.3262257
摘要

Technology opportunities are important drivers of technological advances. Consequently, methods for technology opportunity discovery (TOD) are proposed to discover new types of technology opportunities and to design criteria for defining and evaluating technology opportunities, providing R&D teams and innovators with a plethora of inventive ideas. However, current TOD methods have some common limitations. First, the criteria for defining technology opportunities are typically restrictive, thus may exclude some promising candidates. Second, most criteria for evaluating opportunities lack empirical evidence. In this article, we propose a general methodology for discovering technology opportunities that addresses these limitations. We create a less restrictive technology opportunity space (TOS), built evaluation models for each candidate by learning from historical data, and use optimization techniques to search the TOS for the best technology opportunities. We then implement the proposed methodology in a case study that discovered firm-specific technology opportunities in neural network technology. We present technology opportunities as connected subnetworks of subject–action–object based knowledge networks; designed industry-level, firm-specific and patent-specific evaluation criteria; use random forest to develop the evaluation model from historical patents; and apply ant colony optimization to find the best opportunities. The case shows the feasibility and effectiveness of the general methodology for TOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助亮白的萝卜采纳,获得10
1秒前
2秒前
谢谢不会谢完成签到 ,获得积分10
4秒前
1111发布了新的文献求助10
4秒前
6秒前
6秒前
夕寸完成签到,获得积分10
6秒前
Shinkai39完成签到,获得积分10
6秒前
8秒前
xiaohongmao发布了新的文献求助10
9秒前
科研通AI5应助虚幻的不评采纳,获得10
9秒前
9秒前
xiaoxiaoqiu发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
1111完成签到,获得积分10
12秒前
Ch_7发布了新的文献求助10
12秒前
12秒前
l蓝石发布了新的文献求助10
12秒前
jinhuanghuiyu发布了新的文献求助10
13秒前
上官若男应助远方采纳,获得10
13秒前
古果发布了新的文献求助10
14秒前
14秒前
ziyuwang发布了新的文献求助10
14秒前
14秒前
迅速若魔发布了新的文献求助10
15秒前
xiaoxia发布了新的文献求助10
15秒前
cherry bomb完成签到,获得积分10
16秒前
ding发布了新的文献求助30
16秒前
asapshaozhu发布了新的文献求助10
16秒前
16秒前
独特的绯发布了新的文献求助10
18秒前
魈玖发布了新的文献求助10
18秒前
19秒前
wyt发布了新的文献求助10
19秒前
迷人若冰完成签到,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574241
求助须知:如何正确求助?哪些是违规求助? 3143968
关于积分的说明 9454615
捐赠科研通 2845545
什么是DOI,文献DOI怎么找? 1564367
邀请新用户注册赠送积分活动 732224
科研通“疑难数据库(出版商)”最低求助积分说明 718968