亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network

无线传感器网络 强化学习 方案(数学) 计算机科学 计算机网络 无线传感器网络中的密钥分配 无线 无线网络 人工智能 电信 数学 数学分析
作者
Zheng Gong,Hao Wu,Yong Feng,Nianbo Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (8): 3903-3903 被引量:5
标识
DOI:10.3390/s23083903
摘要

Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a more comprehensive perspective, leading to difficulties in meeting the huge energy demand of large-scale WSNs; therefore, one-to-multiple charging which can charge multiple nodes simultaneously may be a more reasonable choice. To achieve timely and efficient energy replenishment for large-scale WSN, we propose an online one-to-multiple charging scheme based on Deep Reinforcement Learning, which utilizes Double Dueling DQN (3DQN) to jointly optimize the scheduling of both the charging sequence of MC and the charging amount of nodes. The scheme cellularizes the whole network based on the effective charging distance of MC and uses 3DQN to determine the optimal charging cell sequence with the objective of minimizing dead nodes and adjusting the charging amount of each cell being recharged according to the nodes' energy demand in the cell, the network survival time, and MC's residual energy. To obtain better performance and timeliness to adapt to the varying environments, our scheme further utilizes Dueling DQN to improve the stability of training and uses Double DQN to reduce overestimation. Extensive simulation experiments show that our proposed scheme achieves better charging performance compared with several existing typical works, and it has significant advantages in terms of reducing node dead ratio and charging latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu发布了新的文献求助10
1秒前
dcy完成签到,获得积分10
3秒前
沧海静音发布了新的文献求助10
4秒前
科目三应助gym采纳,获得10
4秒前
5秒前
糊涂的笑天完成签到 ,获得积分10
6秒前
wyh发布了新的文献求助10
6秒前
小马哥完成签到,获得积分10
8秒前
嵇元容发布了新的文献求助10
9秒前
susu完成签到,获得积分20
10秒前
陈末应助study1111采纳,获得10
11秒前
新123完成签到,获得积分10
11秒前
wyh完成签到,获得积分10
11秒前
充电宝应助wyh采纳,获得10
17秒前
Hello应助susu采纳,获得10
18秒前
22秒前
histamin完成签到,获得积分10
22秒前
Layen完成签到,获得积分20
22秒前
kbcbwb2002完成签到,获得积分0
22秒前
知足的憨人*-*完成签到,获得积分10
23秒前
荆玉豪完成签到 ,获得积分10
24秒前
26秒前
临子完成签到,获得积分10
30秒前
Layen发布了新的文献求助20
30秒前
一生所爱完成签到,获得积分10
30秒前
嵇元容发布了新的文献求助10
31秒前
Ronan完成签到 ,获得积分10
32秒前
嵇元容完成签到,获得积分10
38秒前
lyy完成签到,获得积分10
41秒前
可爱的函函应助lyy采纳,获得10
47秒前
欣喜的书芹完成签到 ,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
RONG完成签到 ,获得积分10
1分钟前
Nikki发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高山流水完成签到 ,获得积分10
1分钟前
1分钟前
充电宝应助暮然采纳,获得10
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535