已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network

无线传感器网络 强化学习 方案(数学) 计算机科学 计算机网络 无线传感器网络中的密钥分配 无线 无线网络 人工智能 电信 数学 数学分析
作者
Zheng Gong,Hao Wu,Yong Feng,Nianbo Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (8): 3903-3903 被引量:5
标识
DOI:10.3390/s23083903
摘要

Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a more comprehensive perspective, leading to difficulties in meeting the huge energy demand of large-scale WSNs; therefore, one-to-multiple charging which can charge multiple nodes simultaneously may be a more reasonable choice. To achieve timely and efficient energy replenishment for large-scale WSN, we propose an online one-to-multiple charging scheme based on Deep Reinforcement Learning, which utilizes Double Dueling DQN (3DQN) to jointly optimize the scheduling of both the charging sequence of MC and the charging amount of nodes. The scheme cellularizes the whole network based on the effective charging distance of MC and uses 3DQN to determine the optimal charging cell sequence with the objective of minimizing dead nodes and adjusting the charging amount of each cell being recharged according to the nodes' energy demand in the cell, the network survival time, and MC's residual energy. To obtain better performance and timeliness to adapt to the varying environments, our scheme further utilizes Dueling DQN to improve the stability of training and uses Double DQN to reduce overestimation. Extensive simulation experiments show that our proposed scheme achieves better charging performance compared with several existing typical works, and it has significant advantages in terms of reducing node dead ratio and charging latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mingyue123发布了新的文献求助10
1秒前
kisslll完成签到 ,获得积分10
3秒前
5秒前
花花发布了新的文献求助10
6秒前
陈思远完成签到 ,获得积分10
6秒前
Mingyue123完成签到,获得积分10
11秒前
清和完成签到,获得积分10
11秒前
善学以致用应助拉长的鱼采纳,获得10
13秒前
17秒前
FashionBoy应助罗小玲采纳,获得10
19秒前
20秒前
仲夏夜之梦完成签到,获得积分10
21秒前
王某完成签到 ,获得积分10
21秒前
21秒前
23秒前
任梦萍完成签到 ,获得积分10
24秒前
芝士酱完成签到,获得积分10
25秒前
GuoShanjie发布了新的文献求助10
25秒前
obedientsheep完成签到,获得积分10
26秒前
hiu完成签到,获得积分10
28秒前
29秒前
叶子完成签到 ,获得积分10
33秒前
儒雅晓霜发布了新的文献求助10
33秒前
33秒前
34秒前
花花完成签到,获得积分10
34秒前
机灵哈密瓜完成签到,获得积分10
34秒前
ho发布了新的文献求助30
35秒前
云上人完成签到 ,获得积分10
37秒前
Orange应助GuoShanjie采纳,获得10
40秒前
41秒前
41秒前
成就的笑南完成签到 ,获得积分10
42秒前
柚子完成签到 ,获得积分10
43秒前
佛系完成签到 ,获得积分10
45秒前
crab发布了新的文献求助10
46秒前
赘婿应助儒雅晓霜采纳,获得10
50秒前
DF完成签到,获得积分10
51秒前
莫欣宇完成签到 ,获得积分10
52秒前
小呆呆完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504