Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network

无线传感器网络 强化学习 方案(数学) 计算机科学 计算机网络 无线传感器网络中的密钥分配 无线 无线网络 人工智能 电信 数学 数学分析
作者
Zheng Gong,Hao Wu,Yong Feng,Nianbo Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (8): 3903-3903 被引量:5
标识
DOI:10.3390/s23083903
摘要

Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a more comprehensive perspective, leading to difficulties in meeting the huge energy demand of large-scale WSNs; therefore, one-to-multiple charging which can charge multiple nodes simultaneously may be a more reasonable choice. To achieve timely and efficient energy replenishment for large-scale WSN, we propose an online one-to-multiple charging scheme based on Deep Reinforcement Learning, which utilizes Double Dueling DQN (3DQN) to jointly optimize the scheduling of both the charging sequence of MC and the charging amount of nodes. The scheme cellularizes the whole network based on the effective charging distance of MC and uses 3DQN to determine the optimal charging cell sequence with the objective of minimizing dead nodes and adjusting the charging amount of each cell being recharged according to the nodes' energy demand in the cell, the network survival time, and MC's residual energy. To obtain better performance and timeliness to adapt to the varying environments, our scheme further utilizes Dueling DQN to improve the stability of training and uses Double DQN to reduce overestimation. Extensive simulation experiments show that our proposed scheme achieves better charging performance compared with several existing typical works, and it has significant advantages in terms of reducing node dead ratio and charging latency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助zjc1111采纳,获得30
2秒前
2秒前
3秒前
香蕉觅云应助ZZZ采纳,获得10
3秒前
任性的静枫完成签到,获得积分20
3秒前
4秒前
小马甲应助hellogene采纳,获得10
4秒前
5秒前
迷人的林林完成签到,获得积分10
5秒前
5秒前
6秒前
御龙魄发布了新的文献求助10
7秒前
SciGPT应助哇哦采纳,获得10
7秒前
万墨某完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助紧张的怜寒采纳,获得10
8秒前
9秒前
9秒前
张瀚文发布了新的文献求助10
10秒前
10秒前
Owen应助LL采纳,获得10
11秒前
CHENDQ完成签到,获得积分10
11秒前
11秒前
佼佼者完成签到,获得积分10
11秒前
11秒前
MS发布了新的文献求助10
11秒前
12秒前
闪闪听荷完成签到,获得积分10
12秒前
12秒前
12秒前
LIN发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
糖果乖乖发布了新的文献求助10
14秒前
wsy完成签到,获得积分20
15秒前
Astrid1219发布了新的文献求助10
16秒前
orixero应助感性的寄真采纳,获得10
16秒前
SciGPT应助小青虫采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
CMOS图像传感器中低功耗流水线模数转换器的设计 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3321383
求助须知:如何正确求助?哪些是违规求助? 2952725
关于积分的说明 8562164
捐赠科研通 2629998
什么是DOI,文献DOI怎么找? 1438891
科研通“疑难数据库(出版商)”最低求助积分说明 666951
邀请新用户注册赠送积分活动 653347