Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network

无线传感器网络 强化学习 方案(数学) 计算机科学 计算机网络 无线传感器网络中的密钥分配 无线 无线网络 人工智能 电信 数学 数学分析
作者
Zheng Gong,Hao Wu,Yong Feng,Nianbo Liu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (8): 3903-3903 被引量:5
标识
DOI:10.3390/s23083903
摘要

Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a more comprehensive perspective, leading to difficulties in meeting the huge energy demand of large-scale WSNs; therefore, one-to-multiple charging which can charge multiple nodes simultaneously may be a more reasonable choice. To achieve timely and efficient energy replenishment for large-scale WSN, we propose an online one-to-multiple charging scheme based on Deep Reinforcement Learning, which utilizes Double Dueling DQN (3DQN) to jointly optimize the scheduling of both the charging sequence of MC and the charging amount of nodes. The scheme cellularizes the whole network based on the effective charging distance of MC and uses 3DQN to determine the optimal charging cell sequence with the objective of minimizing dead nodes and adjusting the charging amount of each cell being recharged according to the nodes' energy demand in the cell, the network survival time, and MC's residual energy. To obtain better performance and timeliness to adapt to the varying environments, our scheme further utilizes Dueling DQN to improve the stability of training and uses Double DQN to reduce overestimation. Extensive simulation experiments show that our proposed scheme achieves better charging performance compared with several existing typical works, and it has significant advantages in terms of reducing node dead ratio and charging latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助邱丘邱采纳,获得15
1秒前
谷谷发布了新的文献求助10
1秒前
3秒前
孙彩瑛发布了新的文献求助10
4秒前
yuxiaobolab完成签到,获得积分10
8秒前
传奇3应助33采纳,获得10
10秒前
11秒前
15秒前
16秒前
Lv完成签到,获得积分10
16秒前
purplelove发布了新的文献求助10
20秒前
孙彩瑛完成签到,获得积分10
21秒前
酷波er应助争当科研巨匠采纳,获得10
22秒前
23秒前
25秒前
25秒前
27秒前
活泼半凡发布了新的文献求助10
28秒前
小程完成签到 ,获得积分10
28秒前
Yy杨优秀发布了新的文献求助10
29秒前
30秒前
不安毛豆发布了新的文献求助10
30秒前
科研民工发布了新的文献求助10
31秒前
苏silence发布了新的文献求助10
31秒前
33秒前
bkagyin应助流光采纳,获得10
34秒前
oh应助zzznznnn采纳,获得10
35秒前
Cristina2024发布了新的文献求助30
35秒前
LCC完成签到 ,获得积分10
36秒前
comic完成签到,获得积分10
37秒前
37秒前
英姑应助wang佳俊采纳,获得10
37秒前
高大翠丝完成签到 ,获得积分10
39秒前
tttt发布了新的文献求助10
39秒前
满意的大碗完成签到,获得积分10
40秒前
在水一方应助吾月采纳,获得10
41秒前
不安毛豆完成签到,获得积分10
42秒前
43秒前
tb_answer完成签到,获得积分10
44秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075