Hybrid-attention mechanism based heterogeneous graph representation learning

计算机科学 邻接矩阵 图形 理论计算机科学 异构网络 关系(数据库) 特征学习 节点(物理) 代表(政治) 数据挖掘 人工智能 电信 无线网络 结构工程 政治 政治学 工程类 无线 法学
作者
Xiang Wang,Weikang Deng,Zhenyu Meng,Dewang Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123963-123963 被引量:1
标识
DOI:10.1016/j.eswa.2024.123963
摘要

Heterogeneous graph refers to a type of graph data characterized by its diverse node types and relation types, containing rich structures, features and heterogeneous information. How to fully utilize and capture these key information to generate effective node representations poses a great challenge in heterogeneous graph analysis and mining. To better tackle this problem, a heterogeneous graph representation learning model based on hybrid-attention mechanism is proposed, namely Heterogeneous Graph Relation Attention Network (HGRAN). The main contributions of HGRAN are listed as follows. First, a novel framework was proposed for better representing heterogeneous information originating from various relations and comprehensive usage of both structural and feature information instead of employing meta-path based framework. Second, a novel hybrid-attention mechanism which combines relation attention and node attention was proposed within this framework. Third, a novel feature similarity based relation attention is proposed to capture heterogeneous information originating from different relations. Fourth, in order to better implement node attention in heterogeneous graphs, a new transforming method that transforms adjacency matrices of diverse relations into a unified manner is proposed. Finally, extensive experiments on multiple real-world heterogeneous graph datasets are conducted to verify HGRAN, and the results support its superiority in comparison with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss2021发布了新的文献求助20
刚刚
Winnie应助无情的发卡采纳,获得10
1秒前
2秒前
mynbv完成签到,获得积分10
2秒前
科目三应助123采纳,获得10
2秒前
羽宇发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
眼睛大的可乐完成签到,获得积分10
3秒前
浮游应助徐小采纳,获得10
4秒前
852应助徐小采纳,获得10
4秒前
4秒前
max完成签到 ,获得积分10
4秒前
4秒前
青阳发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
Lancent完成签到,获得积分10
6秒前
6秒前
8秒前
超帅花瓣发布了新的文献求助10
9秒前
洛城发布了新的文献求助10
9秒前
NexusExplorer应助吗喽采纳,获得10
10秒前
今晚打老虎完成签到,获得积分10
10秒前
10秒前
摸鱼帝王发布了新的文献求助10
10秒前
知常完成签到,获得积分10
11秒前
11秒前
星辰大海应助羽宇采纳,获得10
11秒前
领导范儿应助无聊的访枫采纳,获得10
11秒前
11秒前
mynbv关注了科研通微信公众号
12秒前
傲寒完成签到 ,获得积分10
12秒前
犀利狗发布了新的文献求助10
12秒前
orixero应助寒来暑往采纳,获得10
13秒前
13秒前
小二郎应助瓦尔迪采纳,获得200
15秒前
15秒前
珠珠完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071