Impaired topology and connectivity of grey matter structural networks in major depressive disorder: evidence from a multi-site neuroimaging data-set

灰质 连接体 脑岛 重性抑郁障碍 神经影像学 神经科学 默认模式网络 丘脑 扣带回前部 心理学 医学 功能连接 认知 白质 磁共振成像 放射科
作者
Jingyi Long,Kun Qin,Nanfang Pan,Wenliang Fan,Yi Li
出处
期刊:British Journal of Psychiatry [Cambridge University Press]
卷期号:224 (5): 170-178 被引量:17
标识
DOI:10.1192/bjp.2024.41
摘要

Background Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. Aims Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. Method A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. Results Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. Conclusions Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烦烦完成签到,获得积分10
1秒前
尔池发布了新的文献求助10
2秒前
orixero应助upupup采纳,获得10
2秒前
2秒前
syh完成签到,获得积分10
2秒前
2秒前
一只百味鸡完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
欣喜书易完成签到 ,获得积分10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得80
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
追寻听云应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352