Impaired topology and connectivity of grey matter structural networks in major depressive disorder: evidence from a multi-site neuroimaging data-set

灰质 连接体 脑岛 重性抑郁障碍 神经影像学 神经科学 默认模式网络 丘脑 扣带回前部 心理学 医学 功能连接 认知 白质 磁共振成像 放射科
作者
Jingyi Long,Kun Qin,Nanfang Pan,Wenliang Fan,Yi Li
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:224 (5): 170-178
标识
DOI:10.1192/bjp.2024.41
摘要

Background Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. Aims Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. Method A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. Results Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. Conclusions Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第七个太阳完成签到,获得积分10
刚刚
冬冬冬发布了新的文献求助10
1秒前
ganchao1776完成签到,获得积分10
1秒前
1秒前
天真的耳机完成签到,获得积分10
2秒前
张晓芳完成签到,获得积分10
2秒前
鹿若风完成签到,获得积分10
3秒前
研妍完成签到,获得积分10
3秒前
王大锤完成签到,获得积分10
4秒前
窝窝头完成签到,获得积分10
4秒前
阔达的水壶完成签到 ,获得积分10
4秒前
4秒前
LLLLL完成签到,获得积分20
5秒前
优秀的牛青完成签到,获得积分10
5秒前
清醒完成签到,获得积分10
5秒前
JINY完成签到,获得积分10
6秒前
贵金属完成签到,获得积分10
6秒前
希望天下0贩的0应助米酒采纳,获得10
6秒前
秋辞完成签到,获得积分10
7秒前
糊涂的凝冬完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助雪白的尔琴采纳,获得10
8秒前
yun完成签到,获得积分10
8秒前
张三完成签到 ,获得积分10
8秒前
ganchao1776发布了新的文献求助10
9秒前
锋回露转123完成签到,获得积分10
9秒前
LU完成签到,获得积分10
10秒前
俏皮诺言完成签到,获得积分10
10秒前
cloud完成签到,获得积分10
10秒前
坚强的寒风完成签到,获得积分10
11秒前
Jason-1024完成签到,获得积分10
11秒前
温婉的水绿完成签到 ,获得积分10
11秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分20
11秒前
12秒前
派大星应助秋辞采纳,获得20
14秒前
mlle完成签到,获得积分10
14秒前
14秒前
14秒前
无限的紫蓝完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169