A critical review of bench aggregation and mining cut clustering techniques based on optimization and artificial intelligence to enhance the open-pit mine planning

计算机科学 聚类分析 人工智能 从长凳到床边 数据挖掘 机器学习 医学物理学 物理
作者
Jorge Luiz Valença Mariz,Mohammad Mahdi Badiozamani,Rodrigo de Lemos Peroni,Ricardo Martins de Abreu Silva
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108334-108334 被引量:2
标识
DOI:10.1016/j.engappai.2024.108334
摘要

Determining the mining sequence is one of the main objectives in mine planning. However, depending on the size of the analyzed instances, such activity might become an extremely difficult task, despite current computational capacity. In addition, determining a feasible and operational mining sequence is also challenging, so practitioners usually employ strategies to segment and simplify the main problem, such as splitting it into distinct time horizons and aggregating blocks into clusters. This paper aims to perform a critical review about the different clustering methodologies and algorithms used for mining-block aggregation, with the purpose of understanding the proposed solutions and identifying the gaps found in the current literature. The reviewed aggregation strategies encompass the modelling of tabular deposits as sets of layers and grouping of blocks in benches, bench-phases, and mining cuts. Among the optimization techniques evaluated, one may find heuristics, artificial intelligence, and exact approaches, relying on deterministic or uncertainty-based methodologies, considering approximately six decades of studies and covering fifty-eight works published in journals and proceedings from 1967 to 2022. In addition to what is seen within the literature analyzed, we also propose future research directions, such as approaches and algorithms not yet implemented to solve the block aggregation problem, thus presenting opportunities for further research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助荒野星辰采纳,获得10
1秒前
1秒前
YHY完成签到,获得积分10
3秒前
科研通AI5应助魏伯安采纳,获得10
3秒前
caoyy发布了新的文献求助10
3秒前
4秒前
5秒前
张喻235532完成签到,获得积分10
6秒前
失眠虔纹发布了新的文献求助10
7秒前
香蕉觅云应助糊涂的小伙采纳,获得10
7秒前
7秒前
sutharsons应助科研通管家采纳,获得200
9秒前
打打应助科研通管家采纳,获得10
9秒前
axin应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
lu应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
研友_MLJldZ发布了新的文献求助10
10秒前
wys完成签到 ,获得积分10
11秒前
12秒前
michaelvin完成签到,获得积分10
12秒前
学术大白完成签到 ,获得积分10
15秒前
15秒前
SYT完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
19秒前
20秒前
20秒前
魏伯安发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849