Progressive Critical Region Transfer for Cross-Domain Visual Object Detection

计算机科学 领域(数学分析) 人工智能 计算机视觉 目标检测 对象(语法) 传输(计算) 模式识别(心理学) 数学 数学分析 并行计算
作者
Xiaowei Wang,Peiwen Jiang,Yang Li,Manjiang Hu,Ming Gao,Dongpu Cao,Rongjun Ding
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9427-9441
标识
DOI:10.1109/tits.2024.3382841
摘要

Well-trained visual object detectors are generally confronted with a severe performance decline when deployed in a novel driving scenario due to the impact of domain shift. Despite excellent improvements in unsupervised domain adaptive object detection achieved by adversarial training, those approaches fail to capture the transfer core underlying the holistic scenes. To solve this problem, we propose a progressive critical region transfer framework for cross-domain visual object detection. Specifically, we exploit a potential foreground mining (PFM) module and a semantic-specific RoI aggregation (SRA) module to improve the robustness of the cross-domain detection framework. Upon the critical regions in the broad sense, the PFM module first highlights the foreground regions by reweighting the hierarchical feature maps in sequence, and then modifies location biases at the downstream position of the backbone network for more accurate upstream predictions. Deep into the critical regions in the narrow sense, the SRA module concentrates on establishing an appropriate matching between batch-wise RoIs and all semantic centers, and further strengthens the aggregation of cross-domain identical semantic with the complement of context references. Together these modules are obligated to transform the adaptation importance from the whole scope to the latent foreground areas, and afterward to the informative regions of interest along the detection pipeline. Experiments show that our progressive critical region transfer framework achieves a state-of-the-art performance in adverse weather, camera configuration, and complicated scene adaptation, which outperforms the baselines by 19.4%, 5.0%, and 6.1%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangjing完成签到,获得积分10
刚刚
Hello应助现实的中蓝采纳,获得10
2秒前
SciGPT应助bajie01采纳,获得10
2秒前
Ava应助雪山飞龙采纳,获得10
2秒前
3秒前
虾虾完成签到,获得积分10
3秒前
4秒前
我是老大应助taotao采纳,获得10
5秒前
LY完成签到,获得积分10
6秒前
彪壮的青亦完成签到,获得积分10
6秒前
ddfsadfs发布了新的文献求助10
7秒前
么么叽完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
ryt完成签到,获得积分20
9秒前
10秒前
JuJu完成签到,获得积分20
11秒前
坦率的夜玉完成签到 ,获得积分10
12秒前
饼冰饼发布了新的文献求助10
12秒前
12秒前
一一完成签到,获得积分10
13秒前
18969431868完成签到,获得积分10
13秒前
14秒前
14秒前
joni发布了新的文献求助20
15秒前
乐乐应助诚心的月光采纳,获得10
15秒前
wbh发布了新的文献求助10
15秒前
yyy发布了新的文献求助10
15秒前
15秒前
taotao发布了新的文献求助10
16秒前
科研通AI5应助5555采纳,获得10
16秒前
牟翎完成签到,获得积分10
18秒前
幻月完成签到,获得积分10
18秒前
冷艳咖啡豆完成签到,获得积分10
18秒前
20秒前
23秒前
雪山飞龙发布了新的文献求助10
24秒前
饼冰饼完成签到,获得积分20
24秒前
suibian完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460