A federated recommendation algorithm based on user clustering and meta-learning

计算机科学 聚类分析 元学习(计算机科学) 联合学习 推荐系统 双聚类 人工智能 数据挖掘 机器学习 相关聚类 CURE数据聚类算法 管理 经济 任务(项目管理)
作者
Enqi Yu,Zhiwei Ye,Zhiqiang Zhang,Ling Qian,Meiyi Xie
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:158: 111483-111483 被引量:12
标识
DOI:10.1016/j.asoc.2024.111483
摘要

Federated recommendation is a typical application of federated learning, which can protect the privacy of users by exchanging models between users' devices and central servers rather than users' raw data. Recently, although some research in federated recommendation has made remarkable progress, there are still two major issues need to be addressed further due to the non-independent and identical distribution (Non-IID) data which is very common in federal recommendation systems. First, the communication load of the user device during training is heavy. Second, the trained local model lacks personalization. Aiming at the above problems, a federated recommendation algorithm based on user clustering and meta-learning, ClusterFedMet, is proposed to improve communication efficiency and recommendation personalization simultaneously. In ClusterFedMet, users are clustered into different clusters according to their data distribution, and user sampling are performed based on the clustering result, thus reduce harmful interference among users with different data distribution. The model is trained with meta-learning, which can generate more personalized local models. During meta-learning, a controller which can dynamically tune the hyperparameters for users is designed to achieve better performance. According to weights, gradients, and losses of each step, the controller can find a learning rate suitable for each user's local data and model. We perform evaluations for the proposed algorithm on two public datasets, and the results demonstrate that our algorithm outperforms other advanced methods in terms of recommendation accuracy and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
malubest发布了新的文献求助10
1秒前
杭啊发布了新的文献求助10
1秒前
xiaomili发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
JHL完成签到,获得积分10
2秒前
qq16发布了新的文献求助10
2秒前
Dotgene完成签到,获得积分10
2秒前
小芙爱雪碧完成签到 ,获得积分10
2秒前
2秒前
孙福禄应助quan采纳,获得10
3秒前
3秒前
Mzhao完成签到,获得积分10
4秒前
4秒前
4秒前
疯狂的虔完成签到,获得积分10
4秒前
6秒前
CipherSage应助右右采纳,获得10
6秒前
玉衡发布了新的文献求助10
6秒前
yao chen完成签到,获得积分10
6秒前
朵拉完成签到,获得积分10
6秒前
由清涟完成签到,获得积分10
7秒前
Drhan完成签到,获得积分10
7秒前
FashionBoy应助断数循环采纳,获得10
7秒前
姣妹崽完成签到,获得积分10
7秒前
马一凡完成签到,获得积分0
7秒前
上官若男应助lan199623采纳,获得10
8秒前
俗人完成签到,获得积分10
8秒前
cangye发布了新的文献求助10
8秒前
Dotgene发布了新的文献求助10
8秒前
wanci应助CO2采纳,获得10
8秒前
joker发布了新的文献求助10
8秒前
SciGPT应助小超采纳,获得10
8秒前
8秒前
malubest完成签到,获得积分10
9秒前
华仔应助朴素的玫瑰采纳,获得30
9秒前
开心的饼干完成签到,获得积分10
10秒前
不会搞科研完成签到,获得积分0
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600