听力图
听力损失
噪声性听力损失
听力学
噪音(视频)
测听
灵敏度(控制系统)
医学
噪声暴露
计算机科学
工程类
人工智能
电子工程
图像(数学)
作者
Brian C. J. Moore,Graham Cox
标识
DOI:10.1177/23312165241240353
摘要
Exposure to intense low-frequency sounds, for example inside tanks and armoured vehicles, can lead to noise-induced hearing loss (NIHL) with a variable audiometric pattern, including low- and mid-frequency hearing loss. It is not known how well existing methods for diagnosing NIHL apply in such cases. Here, the audiograms of 68 military personnel (mostly veterans) who had been exposed to intense low-frequency noise (together with other types of noise) and who had low-frequency hearing loss (defined as a pure-tone average loss at 0.25, 0.5 and 1 kHz ≥20 dB) were used to assess the sensitivity of three diagnostic methods: the method of Coles, Lutman and Buffin, denoted CLB, which depends on the identification of a notch or bulge in the audiogram near 4 kHz, and two methods specifically intended for diagnosing NIHL sustained during military service, the rM-NIHL method, which depends on the identification of a notch or bulge in the audiogram near 4 kHz and/or a hearing loss at high frequencies greater than expected from age alone, and the MLP(18) method based on a multi-layer perceptron. The proportion of individuals receiving a positive diagnosis for either or both ears, which provides an approximate measure of sensitivity, was 0.40 for the CLB method, 0.79 for the rM-NIHL method and 1.0 for the MLP(18) method. It is concluded that the MLP(18) method is suitable for diagnosing NIHL sustained during military service whether or not the exposure includes intense low-frequency sounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI