Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhe Cheng,Xiaobo Gu,Zhou Zhang,Yuanling Zhang,Hua Yin,Wenlong Li,Tian Chen,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:156: 127174-127174 被引量:1
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到 ,获得积分10
刚刚
xmhxpz完成签到,获得积分10
1秒前
邓可新完成签到,获得积分10
1秒前
zyyyyyy完成签到,获得积分10
1秒前
CR7完成签到,获得积分0
1秒前
MorningStar发布了新的文献求助10
3秒前
科研搬运工完成签到,获得积分10
4秒前
小巧的寻双完成签到,获得积分10
4秒前
十二平均律完成签到,获得积分10
5秒前
跳跃完成签到 ,获得积分10
5秒前
5秒前
SciGPT应助冯杰采纳,获得10
5秒前
愤怒的豆腐人完成签到,获得积分10
5秒前
栓儿完成签到 ,获得积分10
5秒前
5秒前
执念完成签到,获得积分10
6秒前
7秒前
油炸丸子发布了新的文献求助10
7秒前
充电宝应助慢行采纳,获得10
7秒前
zhf完成签到,获得积分20
7秒前
7秒前
王静姝完成签到,获得积分10
7秒前
小白完成签到,获得积分10
8秒前
机智采枫完成签到 ,获得积分10
9秒前
科研人发布了新的文献求助10
9秒前
nater3ver完成签到,获得积分10
9秒前
Wonder完成签到,获得积分10
9秒前
Watson完成签到,获得积分10
9秒前
啦啦啦~完成签到,获得积分10
10秒前
小李完成签到 ,获得积分10
10秒前
huang发布了新的文献求助10
10秒前
冯杰完成签到,获得积分10
10秒前
10秒前
米糖安完成签到,获得积分10
11秒前
希达通完成签到,获得积分10
11秒前
zhen完成签到,获得积分10
11秒前
11秒前
祝笑柳完成签到,获得积分10
11秒前
花痴的香菇完成签到,获得积分10
11秒前
abcd_1067完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855