Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhe Cheng,Xiaobo Gu,Zhou Zhang,Yuanling Zhang,Hua Yin,Wenlong Li,Tian Chen,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:156: 127174-127174 被引量:1
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方小白完成签到,获得积分10
刚刚
xiaokezhang发布了新的文献求助10
刚刚
刚刚
zhenzhen发布了新的文献求助10
1秒前
1秒前
hz_sz完成签到,获得积分10
2秒前
2秒前
空白完成签到,获得积分10
2秒前
所所应助合适苗条采纳,获得10
2秒前
专注易绿完成签到,获得积分10
3秒前
Anne应助吱嗷赵采纳,获得10
3秒前
xin应助666采纳,获得20
4秒前
YY发布了新的文献求助10
4秒前
4秒前
huanhuan完成签到,获得积分10
5秒前
小刘不笨完成签到,获得积分10
5秒前
吕绪特完成签到 ,获得积分10
5秒前
6秒前
愉快的夏菡完成签到,获得积分10
6秒前
研友_gnv61n完成签到,获得积分10
6秒前
zmy完成签到,获得积分10
6秒前
小蘑菇应助守约采纳,获得10
7秒前
7秒前
空白发布了新的文献求助10
8秒前
buno应助721采纳,获得20
8秒前
石阶上完成签到 ,获得积分10
8秒前
du完成签到 ,获得积分10
8秒前
Xu完成签到,获得积分10
9秒前
mmmm完成签到,获得积分10
9秒前
9秒前
情怀应助YY采纳,获得10
9秒前
懦弱的安珊完成签到,获得积分10
10秒前
Akim应助xiaokezhang采纳,获得10
10秒前
10秒前
柠木完成签到 ,获得积分10
10秒前
系统提示发布了新的文献求助10
10秒前
marigold完成签到,获得积分10
10秒前
Gaoge完成签到,获得积分10
11秒前
愉快的无招完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678