Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhe Cheng,Xiaobo Gu,Zhou Zhang,Yuanling Zhang,Hua Yin,Wenlong Li,Tian Chen,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:156: 127174-127174 被引量:1
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助雷培采纳,获得10
1秒前
1秒前
actor2006发布了新的文献求助100
1秒前
1秒前
1秒前
1秒前
无花果应助FFFF采纳,获得30
1秒前
tantan完成签到,获得积分10
2秒前
踏实采波完成签到,获得积分10
3秒前
sw发布了新的文献求助10
4秒前
4秒前
weita完成签到,获得积分10
5秒前
共享精神应助不吃橘子采纳,获得10
6秒前
6秒前
在水一方应助a7489420采纳,获得10
6秒前
Lucas应助问凝采纳,获得10
7秒前
重要的天空完成签到,获得积分10
8秒前
ren发布了新的文献求助10
8秒前
斯文败类应助天才采纳,获得10
8秒前
小蘑菇应助勤劳绿柳采纳,获得10
8秒前
黑马王子发布了新的文献求助10
11秒前
姜露萍发布了新的文献求助10
11秒前
天天快乐应助科研小蔡采纳,获得10
11秒前
sunstar发布了新的文献求助10
11秒前
12秒前
问凝完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
科研糊涂神完成签到,获得积分10
13秒前
cc完成签到 ,获得积分10
13秒前
16秒前
17秒前
天天快乐应助yating采纳,获得10
17秒前
小蘑菇应助莘莘采纳,获得10
18秒前
19秒前
qqaeao完成签到,获得积分10
20秒前
20秒前
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142