Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhe Cheng,Xiaobo Gu,Zhou Zhang,Yuanling Zhang,Hua Yin,Wenlong Li,Tian Chen,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:156: 127174-127174 被引量:1
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王巧巧完成签到,获得积分10
刚刚
喜乐发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
aaatan完成签到 ,获得积分10
4秒前
林撞树完成签到,获得积分10
5秒前
小冬腊月完成签到,获得积分10
5秒前
研友_nq2QpZ发布了新的文献求助10
6秒前
FOODIE完成签到,获得积分10
6秒前
冷艳的海白完成签到,获得积分10
6秒前
杰2580发布了新的文献求助10
7秒前
9秒前
可取完成签到,获得积分10
10秒前
美好的老黑完成签到 ,获得积分10
10秒前
momo完成签到,获得积分10
12秒前
机灵石头完成签到,获得积分10
12秒前
研友_nq2QpZ完成签到,获得积分10
13秒前
FashionBoy应助Hua采纳,获得100
13秒前
每天都在找完成签到,获得积分10
14秒前
牛角包完成签到,获得积分10
15秒前
wanci应助Hug采纳,获得10
15秒前
杰2580完成签到,获得积分10
16秒前
lijianguo完成签到,获得积分10
16秒前
确幸完成签到 ,获得积分10
16秒前
小二郎应助王电催化采纳,获得10
17秒前
77最可爱完成签到,获得积分10
17秒前
RenHP完成签到,获得积分10
17秒前
淡然一德完成签到,获得积分10
17秒前
不如吃茶去完成签到 ,获得积分10
18秒前
木子完成签到,获得积分10
21秒前
Huangy000完成签到,获得积分20
21秒前
dream完成签到 ,获得积分10
22秒前
33完成签到,获得积分10
23秒前
23秒前
瑞今天博学了吗完成签到,获得积分10
24秒前
是玥玥啊完成签到 ,获得积分10
24秒前
将个烂就完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418754
求助须知:如何正确求助?哪些是违规求助? 4534384
关于积分的说明 14143702
捐赠科研通 4450621
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410467