亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhe Cheng,Xiaobo Gu,Zhou Zhang,Yuanling Zhang,Hua Yin,Wenlong Li,Tian Chen,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:156: 127174-127174 被引量:1
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GIA完成签到,获得积分10
刚刚
26秒前
浮游应助科研通管家采纳,获得10
27秒前
51秒前
快乐飞丹发布了新的文献求助10
54秒前
1分钟前
快乐飞丹完成签到,获得积分20
1分钟前
9527应助Wei采纳,获得10
1分钟前
大模型应助千堆雪claris采纳,获得10
1分钟前
充电宝应助平安喜乐采纳,获得10
1分钟前
1分钟前
1分钟前
研友_nEWRJ8完成签到,获得积分10
1分钟前
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
天天快乐应助西西娃儿采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
深情安青应助平安喜乐采纳,获得10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
Jie关闭了Jie文献求助
3分钟前
李健应助平安喜乐采纳,获得10
3分钟前
4分钟前
4分钟前
Jie驳回了ding应助
4分钟前
西西娃儿发布了新的文献求助10
4分钟前
平安喜乐发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
大个应助动人的尔容采纳,获得10
4分钟前
4分钟前
Jie发布了新的文献求助200
4分钟前
非泥完成签到,获得积分10
5分钟前
Chris完成签到 ,获得积分0
5分钟前
Jie完成签到,获得积分10
5分钟前
wanci应助平安喜乐采纳,获得10
5分钟前
5分钟前
Jie发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824