Enhancing in-season yield forecast accuracy for film-mulched wheat: A hybrid approach coupling crop model and UAV remote-sensing data by ensemble learning technique

产量(工程) 环境科学 农学 联轴节(管道) 作物 集成学习 农业工程 遥感 作物产量 计算机科学 机器学习 地理 工程类 材料科学 生物 机械工程 冶金
作者
Zhikai Cheng,Xiaobo Gu,Zhihui Zhou,Yuanling Zhang,Haowei Yin,Wenlong Li,Chang Tian,Yadan Du
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:156: 127174-127174 被引量:15
标识
DOI:10.1016/j.eja.2024.127174
摘要

Accurate in-season yield forecasts for field-scale crops are crucial for both farmers and decision-makers. Common methods for yield prediction are limited by the availability of unknown weather data (process-based crop models) and the failure to consider yield formation processes (statistical models based on unmanned aerial vehicle (UAV) images), respectively. Furthermore, previous studies focused only on crops without mulching, yet mulching is an important agronomic approach to increase grain yield in the arid areas of northwest China. We aim to develop a hybrid approach coupling crop model and UAV data through ensemble learning to achieve in-season yield forecasts for film-mulched wheat. A four-year field experiment was constructed (2018–2020 and 2021–2023). We first calibrated AquaCrop using data from 2018 to 2020, and historical weather data were employed to drive AquaCrop for predicting yields in 2021–2023. Next, statistical models were constructed to predict yields based on spectral and textural indices calculated from UAV images. Finally, a hybrid approach coupling the AquaCrop model and remote-sensing data was developed using ensemble learning technique. Quantifying the relative contribution of features used SHapley Additive exPlanations values. The results indicated that AquaCrop yield forecasts exhibited considerable uncertainties (R2: 0.53–0.63; NRMSE: 16.54%–14.83%). The interpretation of yield for remote-sensing data was influenced by background and saturation effects, reaching its highest accuracy at the heading stage (R2 was 0.80, NRMSE was 11.88%). Ensemble learning demonstrated strong performance compared to machine learning algorithms. The coupling model combined the advantages of crop and statistical models by the ensemble learning algorithm, achieving accurate yield predictions more than 40 days before harvest (heading stage) based on AdaBoost regression (R2 was 0.88, NRMSE was 8.40%). The most important forecasting factors affecting yield prediction were the textural indices, followed by the AquaCrop simulated values. Overall, the coupled model showed good performance in predicting the in-season yield of film-mulched wheat, which provided new insights into farm-scale yield prediction. Further validation of the generalizability of the coupled model in different scenarios is required in the future to improve the applicability of the model in actual production practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh发布了新的文献求助10
1秒前
2秒前
3秒前
达利园完成签到,获得积分10
4秒前
4秒前
4秒前
电容器完成签到,获得积分10
4秒前
Jasper应助元谷雪采纳,获得10
5秒前
5秒前
7秒前
Luke发布了新的文献求助10
7秒前
小二郎应助清新的思柔采纳,获得30
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Owen应助爬不起来采纳,获得10
9秒前
10秒前
传奇3应助666采纳,获得10
10秒前
10秒前
Optimistic发布了新的文献求助10
10秒前
10秒前
11秒前
啸西风完成签到,获得积分10
12秒前
鲨鱼辣椒吼吼哈完成签到,获得积分10
12秒前
lunky发布了新的文献求助10
13秒前
科研通AI2S应助springwyc采纳,获得10
14秒前
鹿芗泽完成签到,获得积分10
14秒前
fr发布了新的文献求助10
14秒前
14秒前
liu发布了新的文献求助10
15秒前
柏林寒冬应助典雅日记本采纳,获得10
15秒前
15秒前
西瓜味奶糖完成签到 ,获得积分10
16秒前
八十八夜的茶摘完成签到,获得积分10
16秒前
wang完成签到 ,获得积分10
17秒前
Optimistic完成签到,获得积分10
17秒前
19秒前
领导范儿应助平常语堂采纳,获得10
19秒前
19秒前
Lucas应助高贵秋柳采纳,获得10
19秒前
李animal完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497