The accumulation of contaminants like PAHs in soil due to industrialization, urbanization, and intensified agriculture poses environmental challenges, owing to their persistence, hydrophobic nature, and toxicity. Thus, the degradation of PAHs has attracted worldwide attention in soil remediation. This study explored the effect of noble metal and temperature on the degradation of various polycyclic aromatic hydrocarbons (PAHs) in soil, as well as the types of reactive radicals generated and mechanism. The Fe-Pd/AC and Fe-Pt/AC activated persulfate exhibited high removal efficiency of 19 kinds of PAHs, about 79.95 % and 83.36 %, respectively. Fe-Pt/AC-activated persulfate exhibits superior degradation efficiency than that on Fe-Pd/AC-activated persulfate, due to the higher specific surface area and dispersity of Pt particles, thereby resulting in increased reactive radicals (·OH, SO