催化作用
分解水
析氧
材料科学
钼
电解
镍
纳米棒
氧化物
阳极
铂金
无机化学
化学工程
贵金属
电解水
化学
物理化学
电化学
纳米技术
电极
光催化
冶金
生物化学
工程类
电解质
作者
Thi Luu Luyen Doan,Dinh Chuong Nguyen,Nikhil Komalla,Nguyen N. Hieu,Lam Nguyen‐Dinh,Nelson Y. Dzade,Cheol Sang Kim,Chan Hee Park
标识
DOI:10.1016/j.jcis.2024.04.175
摘要
A new catalyst has been developed that utilizes molybdenum oxide (MoO3)/nickel molybdenum oxide (NiMoO4) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO2, at industrial-grade current level (≥1000 mA·cm−2). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm−2 at a remarkably small cell voltage of 1.55 V and has shown extraordinary durability for over 50 h. Density functional theory (DFT) calculations have proved that the combination of MoO3 and NiMoO4 creates a metallic heterostructure with outstanding charge transfer ability. Moreover, DFT calculations have also shown that the excellent chemical coupling effect between the MoO3/NiMoO4 and Pt synergistically optimize the charge transfer capability and Gibbs free energies of intermediate species, leading to remarkably speeding up the reaction kinetics of water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI