亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatio-temporal prediction of groundwater vulnerability based on CNN-LSTM model with self-attention mechanism: A case study in Hetao Plain, northern China

地下水 脆弱性(计算) 环境科学 水资源管理 支持向量机 随机森林 环境资源管理 计算机科学 人工智能 地质学 岩土工程 计算机安全
作者
Yifu Zhao,Liangping Yang,Hongjie Pan,Yanlong Li,Yongxu Shao,Junxia Li,Xianjun Xie
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:153: 128-142 被引量:6
标识
DOI:10.1016/j.jes.2024.03.052
摘要

Located in northern China, the Hetao Plain is an important agro-economic zone and population centre. The deterioration of local groundwater quality has had a serious impact on human health and economic development. Nowadays, the groundwater vulnerability assessment (GVA) has become an essential task to identify the current status and development trend of groundwater quality. In this study, the convolutional neural network (CNN) and long short-term memory (LSTM) are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism. The study first evaluates the prediction accuracy of the CNN-LSTM model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The results indicate that the CNN-LSTM model outperforms these models, demonstrating its significance in groundwater vulnerability assessment. The predictions suggest a heightened risk of groundwater vulnerability in the study area in the future. This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities. Moreover, the overall groundwater vulnerability risk in the entire region has increased, evident from both the notably high value and standard deviation. This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities. The model can be optimized for diverse applications across regional environmental assessment, pollution prediction, and risk statistics. This study holds particular significance for ecological protection and groundwater resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助冷艳的立果采纳,获得10
1秒前
Yam呀完成签到 ,获得积分10
29秒前
汉堡包应助虚幻的不评采纳,获得10
31秒前
48秒前
404NotFOUND应助科研通管家采纳,获得10
48秒前
饭饭发布了新的文献求助10
52秒前
58秒前
1分钟前
Ava应助饭饭采纳,获得10
1分钟前
xiao完成签到 ,获得积分10
1分钟前
yoyo发布了新的文献求助20
1分钟前
1分钟前
上官若男应助cassie采纳,获得10
1分钟前
FashionBoy应助Ade阿德采纳,获得10
1分钟前
1分钟前
1分钟前
暖暖发布了新的文献求助10
1分钟前
Ade阿德发布了新的文献求助10
1分钟前
我是老大应助iorpi采纳,获得10
1分钟前
星辰大海应助hxd采纳,获得10
1分钟前
结实白容发布了新的文献求助20
1分钟前
zyx完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
萨尔莫斯完成签到,获得积分20
1分钟前
科研通AI40应助虚幻的不评采纳,获得10
1分钟前
乐乐应助平常远山采纳,获得10
1分钟前
liuqiuchina完成签到,获得积分10
1分钟前
夜阑完成签到,获得积分10
1分钟前
朴素亦绿完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助VDC采纳,获得10
2分钟前
2分钟前
hxd发布了新的文献求助10
2分钟前
浦肯野举报否定之否定求助涉嫌违规
2分钟前
2分钟前
2分钟前
2分钟前
VDC发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088179
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460