Modality-aware Heterogeneous Graph for Joint Video Moment Retrieval and Highlight Detection

计算机科学 接头(建筑物) 人工智能 图形 计算机视觉 力矩(物理) 理论计算机科学 经典力学 物理 工程类 建筑工程
作者
Ruomei Wang,Jiawei Feng,Fuwei Zhang,Xiaonan Luo,Yuanmao Luo
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 8896-8911
标识
DOI:10.1109/tcsvt.2024.3389024
摘要

The joint task of video moment retrieval and video highlight detection is a challenging study, which requires building a model that not only captures contextual information between sequences in time but also has the ability to understand and judge significance. This paper solves these problems from three aspects. Firstly, we design a parameter-free cross-modal statistical correlation interaction method. A novel saliency enhancement function is defined to quantify the saliency differences between the important features associated with the query and other features to achieve parameter-free cross-modal fusion. Secondly, we propose a novel modality-aware heterogeneous graph reasoning mechanism (MHGR). MHGR can effectively capture the global context information between sequences, enhance the local association relationship between sequences, and deal with the complexity of multi-modal data better through the organic combination of two key modules: parameter-free cross-modal statistical correlation interaction, and heterogeneous graph reasoning mechanism. Thirdly, a lightweight solution for the joint task of video moment retrieval and highlight detection is designed based on the above two novel algorithm modules. Comprehensive experiments are conducted on publicly available benchmark data to validate the advantages of the new solution in comparison with a series of state-of-the-art peer methods. Quantitative results consistently demonstrate that the new solution is lightweight and has high inference performance so the remarkable improvement in accuracy achieved by the new solution with respect to peer methods. An extended ablation study is further conducted to show the usefulness of each module of the solution in acquiring its computational capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜仔完成签到,获得积分10
刚刚
zjp完成签到,获得积分10
刚刚
刚刚
liyiren完成签到,获得积分10
1秒前
我是老大应助WangSir采纳,获得10
1秒前
TrinhTran2001完成签到,获得积分10
1秒前
ustina完成签到,获得积分10
1秒前
dyc0222完成签到,获得积分10
2秒前
nan完成签到,获得积分10
2秒前
跨材料完成签到,获得积分10
2秒前
chongmu完成签到,获得积分10
2秒前
Michael完成签到,获得积分10
2秒前
微笑的映波完成签到,获得积分10
3秒前
4秒前
李爱国应助Stanford采纳,获得10
4秒前
4秒前
ning完成签到,获得积分10
4秒前
5秒前
橘子完成签到,获得积分10
5秒前
鳗鱼灵安完成签到,获得积分10
5秒前
zhy完成签到,获得积分10
6秒前
今后应助junjieLIU采纳,获得10
6秒前
梅岗郑发布了新的文献求助10
6秒前
科研通AI2S应助TUTU采纳,获得15
7秒前
斯文败类应助无限毛豆采纳,获得10
7秒前
苏silence完成签到,获得积分10
7秒前
夏淼关注了科研通微信公众号
7秒前
8秒前
sunny完成签到,获得积分10
8秒前
8秒前
yirenli完成签到,获得积分10
8秒前
8秒前
whysoserious完成签到,获得积分10
8秒前
义气如萱发布了新的文献求助10
9秒前
粗犷的灵松完成签到,获得积分10
9秒前
蝶舞天涯完成签到,获得积分10
10秒前
开封完成签到 ,获得积分10
10秒前
咕咕完成签到,获得积分10
10秒前
Akim应助笑点低的牛二采纳,获得10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
连铸钢板坯低倍组织缺陷评级图 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700602
求助须知:如何正确求助?哪些是违规求助? 3250829
关于积分的说明 9871797
捐赠科研通 2962891
什么是DOI,文献DOI怎么找? 1624876
邀请新用户注册赠送积分活动 769598
科研通“疑难数据库(出版商)”最低求助积分说明 742374