Unraveling the Molecular Mechanism of H2O2 Production on Au–Pd Nanoalloy Surfaces

催化作用 元动力学 选择性 化学 吸附 电极 分子动力学 标准电极电位 纳米技术 电极电位 水溶液 化学物理 电化学 材料科学 计算化学 物理化学 有机化学
作者
Wei Liu,Liliang Tian,Le Shi
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (16): 6682-6688
标识
DOI:10.1021/acs.jpcc.4c00545
摘要

Oxygen reduction reaction (ORR) can proceed along two distinct pathways: the 4-electron pathway and the 2-electron pathway. The 4-electron pathway holds significant value in fuel cell technology, whereas the 2-electron pathway plays a crucial role in the industrial production of H2O2. Accurate prediction of the catalytic selectivity in the ORR stands as a pivotal factor in designing effective catalyst materials. It has been experimentally demonstrated that Au–Pd nanoalloy exhibit a high selectivity toward electrocatalytic H2O2 production. However, based on the widely employed computational hydrogen electrode method, the production of H2O on the surface of Au–Pd nanoalloy is more thermodynamically favorable, which shows a discrepancy with experimental results. In this work, we systematically investigate the influence of aqueous environment as well as electrode potential toward the ORR employing state-of-the-art ab initio molecular dynamics and metadynamics simulations. Our work reveals that the water molecules above the Au–Pd nanoalloy surface can alter the adsorption behavior of O2 and weaken the interaction between metal atom in the catalyst and oxygen atom in O2, therefore contributing to a high selectivity of Au–Pd nanoalloy toward H2O2 production. With a more negative electrode potential, the stability of H2O2 will decrease, and the corresponding selectivity will be lowered. These discoveries provide a dynamic perspective elucidating efficient H2O2 production on Au–Pd nanoalloy surfaces. Furthermore, they underscore the paramount significance of both the aqueous environment and electrode potential in shaping the ORR process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lijiauyi1994发布了新的文献求助10
3秒前
4秒前
夜猫子发布了新的文献求助10
4秒前
倩倩发布了新的文献求助10
4秒前
5秒前
5秒前
ZJL发布了新的文献求助10
6秒前
7秒前
包破茧完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
mysci完成签到,获得积分10
11秒前
11秒前
蓝天发布了新的文献求助10
11秒前
bkagyin应助努力摸鱼的柠檬采纳,获得10
11秒前
ll发布了新的文献求助10
11秒前
无极微光应助HongMou采纳,获得20
13秒前
苏氨酸完成签到,获得积分10
13秒前
womendoukeyi发布了新的文献求助10
13秒前
14秒前
15秒前
NexusExplorer应助ll采纳,获得10
16秒前
17秒前
18秒前
日富一日完成签到,获得积分10
19秒前
深情安青应助茶米采纳,获得10
19秒前
19秒前
Lucas应助散热采纳,获得10
20秒前
默默的靖发布了新的文献求助10
22秒前
搜集达人应助倩倩采纳,获得10
24秒前
BowieHuang应助Broadway Zhang采纳,获得10
24秒前
24秒前
26秒前
26秒前
26秒前
moss完成签到 ,获得积分10
27秒前
zxx发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536699
求助须知:如何正确求助?哪些是违规求助? 4624302
关于积分的说明 14591473
捐赠科研通 4564867
什么是DOI,文献DOI怎么找? 2501941
邀请新用户注册赠送积分活动 1480687
关于科研通互助平台的介绍 1451955