Automatic segmentation of curtain wall frame using a context collaboration pyramid network

计算机科学 棱锥(几何) 背景(考古学) 分割 帧(网络) 幕墙 人工智能 计算机视觉 计算机图形学(图像) 电信 地质学 几何学 古生物学 材料科学 数学 复合材料
作者
Decheng Wu,Longqi Cheng,Rui Li,Pingan Yang,Xiaoyu Xu,Xiaojie Wang,Chul-Hee Lee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108309-108309 被引量:1
标识
DOI:10.1016/j.engappai.2024.108309
摘要

Accurate positioning of curtain wall frames is crucial for the automated installation of curtain wall modules. However, the current robot-based installation methods overly depend on visual guidance from operators, resulting in high costs and limiting construction efficiency. The development of deep learning has introduced an image segmentation approach that offers a new solution for the visual positioning of curtain wall frames. This paper proposes a context collaboration pyramid network to automatically segment curtain wall frames by incorporating context interaction and channel guided pyramid structure. The model adopts an "encoder-decoder" architecture with a feature interaction block strategically inserted between the encoder and decoder. Specifically, the encoder utilizes the pyramid pooling Transformer as a backbone to extract multi-level features from original RGB images. The decoder employs a channel guided pyramid convolution module to integrate multi-scale features and achieve finer prediction. Meanwhile, a context interaction fusion module between the features of adjacent levels was designed carefully to enhance the collaboration of the architecture. In addition, a benchmark dataset for the curtain wall frame segmentation task, consisting of 1547 images, was established. The dataset incorporates challenging scenarios, including strong lights, low contrast, and cluttered backgrounds. This method is evaluated on the collected dataset, and achieves an impressive accuracy of 97.30% and an F1-Score of 88.95%, outperforming other segmentation networks. Overall, the proposed method can extract target information accurately and efficiently and provide critical visual guidance for the robot, so as to promote the automatic installation level of the curtain wall module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
鸭鸭发布了新的文献求助20
1秒前
豆子完成签到 ,获得积分10
3秒前
4秒前
ely发布了新的文献求助10
4秒前
4秒前
潇洒的凝冬完成签到,获得积分10
5秒前
李健的小迷弟应助kenna123采纳,获得10
5秒前
纸飞机发布了新的文献求助10
6秒前
小蘑菇应助洗剪吹采纳,获得10
8秒前
haowu发布了新的文献求助10
9秒前
无心的书发布了新的文献求助10
10秒前
飘落发布了新的文献求助10
11秒前
Survivor完成签到,获得积分10
11秒前
林铮完成签到,获得积分10
14秒前
Eric完成签到,获得积分10
16秒前
yan发布了新的文献求助10
17秒前
CurryFan发布了新的文献求助20
18秒前
炙热靖雁发布了新的文献求助30
20秒前
平常的傲白完成签到,获得积分10
22秒前
哈比人linling完成签到,获得积分10
23秒前
vision0000完成签到,获得积分10
26秒前
27秒前
29秒前
yrr发布了新的文献求助10
30秒前
oceanao应助科研通管家采纳,获得10
31秒前
几又应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
MoonFlows应助科研通管家采纳,获得20
31秒前
31秒前
科研通AI2S应助安详芾采纳,获得10
35秒前
羊羊羊完成签到 ,获得积分20
35秒前
38秒前
大模型应助aff采纳,获得10
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228