Automatic segmentation of curtain wall frame using a context collaboration pyramid network

计算机科学 棱锥(几何) 背景(考古学) 分割 帧(网络) 幕墙 人工智能 计算机视觉 计算机图形学(图像) 电信 地质学 几何学 数学 古生物学 复合材料 材料科学
作者
Decheng Wu,Longqi Cheng,Rui Li,Pingan Yang,Xiaoyu Xu,Xiaojie Wang,Chul-Hee Lee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108309-108309 被引量:1
标识
DOI:10.1016/j.engappai.2024.108309
摘要

Accurate positioning of curtain wall frames is crucial for the automated installation of curtain wall modules. However, the current robot-based installation methods overly depend on visual guidance from operators, resulting in high costs and limiting construction efficiency. The development of deep learning has introduced an image segmentation approach that offers a new solution for the visual positioning of curtain wall frames. This paper proposes a context collaboration pyramid network to automatically segment curtain wall frames by incorporating context interaction and channel guided pyramid structure. The model adopts an "encoder-decoder" architecture with a feature interaction block strategically inserted between the encoder and decoder. Specifically, the encoder utilizes the pyramid pooling Transformer as a backbone to extract multi-level features from original RGB images. The decoder employs a channel guided pyramid convolution module to integrate multi-scale features and achieve finer prediction. Meanwhile, a context interaction fusion module between the features of adjacent levels was designed carefully to enhance the collaboration of the architecture. In addition, a benchmark dataset for the curtain wall frame segmentation task, consisting of 1547 images, was established. The dataset incorporates challenging scenarios, including strong lights, low contrast, and cluttered backgrounds. This method is evaluated on the collected dataset, and achieves an impressive accuracy of 97.30% and an F1-Score of 88.95%, outperforming other segmentation networks. Overall, the proposed method can extract target information accurately and efficiently and provide critical visual guidance for the robot, so as to promote the automatic installation level of the curtain wall module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的静柏完成签到 ,获得积分10
刚刚
上官若男应助啦啦啦123采纳,获得10
1秒前
维奈克拉应助孟寐以求采纳,获得20
1秒前
1秒前
1秒前
席水蓉完成签到 ,获得积分10
1秒前
1秒前
Dream完成签到,获得积分10
2秒前
uf欧完成签到,获得积分10
2秒前
波菌完成签到,获得积分10
2秒前
3秒前
小乖完成签到,获得积分10
3秒前
大意的飞莲完成签到 ,获得积分10
3秒前
4秒前
4秒前
王京华发布了新的文献求助10
4秒前
平常亦凝关注了科研通微信公众号
4秒前
5秒前
zzsy完成签到,获得积分10
5秒前
领导范儿应助道天采纳,获得10
5秒前
稳重紫蓝完成签到 ,获得积分10
6秒前
科研通AI2S应助于特采纳,获得10
6秒前
zmz应助郑大钱采纳,获得10
7秒前
7秒前
7秒前
lizi完成签到,获得积分10
7秒前
7秒前
8秒前
春雨发布了新的文献求助10
8秒前
朵朵发布了新的文献求助10
8秒前
8秒前
顾矜应助张垚采纳,获得10
9秒前
冷傲松鼠完成签到 ,获得积分10
9秒前
邵初蓝完成签到,获得积分10
10秒前
11秒前
燕燕完成签到 ,获得积分10
11秒前
傻傻的修洁完成签到,获得积分10
11秒前
11秒前
uf欧发布了新的文献求助10
11秒前
称心的灵枫完成签到 ,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034