Zero-1-to-3: Domain-Level Zero-Shot Cognitive Diagnosis via One Batch of Early-Bird Students towards Three Diagnostic Objectives

零(语言学) 弹丸 零点能量 认知 领域(数学分析) 心理学 数学 物理 数学分析 量子力学 材料科学 精神科 语言学 哲学 冶金
作者
Weibo Gao,Qi Liu,Hao Wang,Linan Yue,Haoyang Bi,Yin Gu,Fang‐Zhou Yao,Zheng Zhang,Xin Li,Yuanjing He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8417-8426 被引量:1
标识
DOI:10.1609/aaai.v38i8.28684
摘要

Cognitive diagnosis seeks to estimate the cognitive states of students by exploring their logged practice quiz data. It plays a pivotal role in personalized learning guidance within intelligent education systems. In this paper, we focus on an important, practical, yet often underexplored task: domain-level zero-shot cognitive diagnosis (DZCD), which arises due to the absence of student practice logs in newly launched domains. Recent cross-domain diagnostic models have been demonstrated to be a promising strategy for DZCD. These methods primarily focus on how to transfer student states across domains. However, they might inadvertently incorporate non-transferable information into student representations, thereby limiting the efficacy of knowledge transfer. To tackle this, we propose Zero-1-to-3, a domain-level zero-shot cognitive diagnosis framework via one batch of early-bird students towards three diagnostic objectives. Our approach initiates with pre-training a diagnosis model with dual regularizers, which decouples student states into domain-shared and domain-specific parts. The shared cognitive signals can be transferred to the target domain, enriching the cognitive priors for the new domain, which ensures the cognitive state propagation objective. Subsequently, we devise a strategy to generate simulated practice logs for cold-start students through analyzing the behavioral patterns from early-bird students, fulfilling the domain-adaption goal. Consequently, we refine the cognitive states of cold-start students as diagnostic outcomes via virtual data, aligning with the diagnosis-oriented goal. Finally, extensive experiments on six real-world datasets highlight the efficacy of our model for DZCD and its practical application in question recommendation. The code is publicly available at https://github.com/bigdata-ustc/Zero-1-to-3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助rjj001022采纳,获得10
1秒前
an完成签到,获得积分10
2秒前
优美紫槐应助ZZM采纳,获得10
2秒前
WFLLL发布了新的文献求助20
3秒前
spc68应助许思真采纳,获得10
3秒前
Carrie完成签到,获得积分20
3秒前
星辰大海应助AledDak采纳,获得10
4秒前
FashionBoy应助Li采纳,获得10
4秒前
思源应助安详岱周采纳,获得10
5秒前
5秒前
一二发布了新的文献求助10
5秒前
NexusExplorer应助salute_sang采纳,获得10
5秒前
5秒前
坦率白竹完成签到,获得积分10
6秒前
yznfly应助辛勤三问采纳,获得50
6秒前
糖糖发布了新的文献求助10
6秒前
7秒前
打打应助猪猪hero采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
ZZM完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
ziyue发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
Akim应助WFLLL采纳,获得10
13秒前
零零发布了新的文献求助10
13秒前
judy完成签到,获得积分20
14秒前
111发布了新的文献求助10
14秒前
15秒前
15秒前
英俊的铭应助火星上向珊采纳,获得10
17秒前
18秒前
七叶树完成签到,获得积分10
18秒前
深情安青应助wanghaha采纳,获得10
18秒前
18秒前
柠檬柠檬发布了新的文献求助10
19秒前
455发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675682
求助须知:如何正确求助?哪些是违规求助? 4948575
关于积分的说明 15154473
捐赠科研通 4834951
什么是DOI,文献DOI怎么找? 2589798
邀请新用户注册赠送积分活动 1543556
关于科研通互助平台的介绍 1501293