Network Online Change Point Localization

点(几何) 计算机科学 人工智能 数学 几何学
作者
Yi Yu,Oscar Hernán Madrid Padilla,Daren Wang,Alessandro Rinaldo
出处
期刊:SIAM journal on mathematics of data science [Society for Industrial and Applied Mathematics]
卷期号:6 (1): 176-198
标识
DOI:10.1137/22m1529816
摘要

.We study the following online network change point detection settings: A time series of independent, possibly sparse Bernoulli networks whose distributions might change at an unknown time are observed in a sequential manner, and at each time point, a determination has to be made on whether a change has taken place in the near past. The goal is to detect the change point event (if any has occurred) as quickly as possible, subject to prespecified constraints on the probability or number of false alarms. We propose a CUSUM-based procedure and derive two high-probability upper bounds on its detection delay, i.e., detection delay \(\{ \gtrsim \log(1/\alpha)\frac{1}{\kappa_0^2 n \rho}\); \(\lesssim \log(\Delta/\alpha) \frac{r}{\kappa_0^2 n \rho}\), under a low-rank assumption; \(\lesssim \log(\Delta/\alpha) \frac{\max\{r^2/n, \log(r), 1\}}{\kappa_0^2 n \rho}\), under a block-constancy assumption, where \(\kappa_0, n, \rho, r\), and \(\alpha\) are the normalized jump size, network size, entrywise sparsity, rank sparsity, and overall type I error upper bound. All the model parameters are allowed to vary as \(\Delta\), the unknown change point, diverges. We further establish a minimax lower bound on the detection delay. Under the low-rank assumption and when the rank is of constant order or under the block-constancy assumption when the number of blocks \(r \lesssim \sqrt{n}\), we obtain minimax rates. The above upper bounds are achieved by novel procedures proposed in this paper, designed for quick detection under two different forms of type I error control. The first is based on controlling the overall probability of a false alarm when there are no change points, and the second is based on specifying a lower bound on the expected time of the first false alarm. Extensive experiments show that under different scenarios and the aforementioned forms of type I error control, our proposed approaches well outperform state-of-the-art methods.Keywordsdynamic networksonline change point detectionminimax optimalityMSC codes62C2062L99

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
BowieHuang应助lilili采纳,获得10
刚刚
小青椒发布了新的文献求助100
1秒前
云谷发布了新的文献求助10
1秒前
zzzzz完成签到,获得积分10
1秒前
2秒前
niko完成签到,获得积分10
2秒前
xx完成签到,获得积分10
2秒前
3秒前
yupaopao发布了新的文献求助10
3秒前
3秒前
ROOT完成签到,获得积分20
3秒前
桐桐应助顺心背包采纳,获得10
3秒前
调皮寻梅完成签到,获得积分10
4秒前
4秒前
Sg完成签到,获得积分10
5秒前
小白发布了新的文献求助10
5秒前
哦1完成签到,获得积分10
6秒前
TH发布了新的文献求助10
6秒前
清新的筝发布了新的文献求助10
7秒前
Jared应助111采纳,获得10
7秒前
8秒前
夜夜发布了新的文献求助10
8秒前
8秒前
脑洞疼应助哦1采纳,获得10
8秒前
Yanzhi发布了新的文献求助10
8秒前
杨欢发布了新的文献求助10
9秒前
9秒前
时言序完成签到,获得积分10
9秒前
ztgzttt完成签到,获得积分10
9秒前
maowei完成签到,获得积分10
10秒前
SciGPT应助hfy采纳,获得10
10秒前
范范范完成签到,获得积分10
10秒前
左转完成签到,获得积分10
11秒前
谨慎建辉完成签到,获得积分10
11秒前
11秒前
11秒前
情怀应助研友_8Y26PL采纳,获得10
11秒前
善学以致用应助YCQ采纳,获得10
12秒前
共享精神应助岁城采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503