Network Online Change Point Localization

点(几何) 计算机科学 人工智能 数学 几何学
作者
Yi Yu,Oscar Hernán Madrid Padilla,Daren Wang,Alessandro Rinaldo
出处
期刊:SIAM journal on mathematics of data science [Society for Industrial and Applied Mathematics]
卷期号:6 (1): 176-198
标识
DOI:10.1137/22m1529816
摘要

.We study the following online network change point detection settings: A time series of independent, possibly sparse Bernoulli networks whose distributions might change at an unknown time are observed in a sequential manner, and at each time point, a determination has to be made on whether a change has taken place in the near past. The goal is to detect the change point event (if any has occurred) as quickly as possible, subject to prespecified constraints on the probability or number of false alarms. We propose a CUSUM-based procedure and derive two high-probability upper bounds on its detection delay, i.e., detection delay \(\{ \gtrsim \log(1/\alpha)\frac{1}{\kappa_0^2 n \rho}\); \(\lesssim \log(\Delta/\alpha) \frac{r}{\kappa_0^2 n \rho}\), under a low-rank assumption; \(\lesssim \log(\Delta/\alpha) \frac{\max\{r^2/n, \log(r), 1\}}{\kappa_0^2 n \rho}\), under a block-constancy assumption, where \(\kappa_0, n, \rho, r\), and \(\alpha\) are the normalized jump size, network size, entrywise sparsity, rank sparsity, and overall type I error upper bound. All the model parameters are allowed to vary as \(\Delta\), the unknown change point, diverges. We further establish a minimax lower bound on the detection delay. Under the low-rank assumption and when the rank is of constant order or under the block-constancy assumption when the number of blocks \(r \lesssim \sqrt{n}\), we obtain minimax rates. The above upper bounds are achieved by novel procedures proposed in this paper, designed for quick detection under two different forms of type I error control. The first is based on controlling the overall probability of a false alarm when there are no change points, and the second is based on specifying a lower bound on the expected time of the first false alarm. Extensive experiments show that under different scenarios and the aforementioned forms of type I error control, our proposed approaches well outperform state-of-the-art methods.Keywordsdynamic networksonline change point detectionminimax optimalityMSC codes62C2062L99
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓬莱山完成签到 ,获得积分10
刚刚
刚刚
lly完成签到,获得积分10
刚刚
1秒前
小C完成签到,获得积分10
1秒前
1秒前
kang12完成签到,获得积分10
1秒前
害怕的涔完成签到 ,获得积分10
1秒前
1秒前
followZ完成签到,获得积分10
2秒前
稚未完成签到,获得积分10
2秒前
四川知名猛男完成签到 ,获得积分10
2秒前
3秒前
jjdgangan发布了新的文献求助10
3秒前
Ampace小老弟发布了新的文献求助200
4秒前
5秒前
Afeng发布了新的文献求助10
5秒前
思源应助lyh采纳,获得10
5秒前
luandouing完成签到,获得积分10
5秒前
wanci应助muxi暮夕采纳,获得10
5秒前
詹军完成签到,获得积分10
6秒前
6秒前
7秒前
敷斩完成签到,获得积分10
7秒前
JamesPei应助时尚幻莲采纳,获得10
8秒前
外向蜡烛完成签到 ,获得积分10
9秒前
10秒前
今后应助潇洒的雅蕊采纳,获得30
11秒前
11秒前
lyh完成签到,获得积分10
11秒前
12秒前
12秒前
西柚芝士茉莉完成签到,获得积分10
12秒前
栗子鱼发布了新的文献求助10
13秒前
朱立夫完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
jjdgangan完成签到,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685