Network Online Change Point Localization

点(几何) 计算机科学 人工智能 数学 几何学
作者
Yi Yu,Oscar Hernán Madrid Padilla,Daren Wang,Alessandro Rinaldo
出处
期刊:SIAM journal on mathematics of data science [Society for Industrial and Applied Mathematics]
卷期号:6 (1): 176-198
标识
DOI:10.1137/22m1529816
摘要

.We study the following online network change point detection settings: A time series of independent, possibly sparse Bernoulli networks whose distributions might change at an unknown time are observed in a sequential manner, and at each time point, a determination has to be made on whether a change has taken place in the near past. The goal is to detect the change point event (if any has occurred) as quickly as possible, subject to prespecified constraints on the probability or number of false alarms. We propose a CUSUM-based procedure and derive two high-probability upper bounds on its detection delay, i.e., detection delay \(\{ \gtrsim \log(1/\alpha)\frac{1}{\kappa_0^2 n \rho}\); \(\lesssim \log(\Delta/\alpha) \frac{r}{\kappa_0^2 n \rho}\), under a low-rank assumption; \(\lesssim \log(\Delta/\alpha) \frac{\max\{r^2/n, \log(r), 1\}}{\kappa_0^2 n \rho}\), under a block-constancy assumption, where \(\kappa_0, n, \rho, r\), and \(\alpha\) are the normalized jump size, network size, entrywise sparsity, rank sparsity, and overall type I error upper bound. All the model parameters are allowed to vary as \(\Delta\), the unknown change point, diverges. We further establish a minimax lower bound on the detection delay. Under the low-rank assumption and when the rank is of constant order or under the block-constancy assumption when the number of blocks \(r \lesssim \sqrt{n}\), we obtain minimax rates. The above upper bounds are achieved by novel procedures proposed in this paper, designed for quick detection under two different forms of type I error control. The first is based on controlling the overall probability of a false alarm when there are no change points, and the second is based on specifying a lower bound on the expected time of the first false alarm. Extensive experiments show that under different scenarios and the aforementioned forms of type I error control, our proposed approaches well outperform state-of-the-art methods.Keywordsdynamic networksonline change point detectionminimax optimalityMSC codes62C2062L99
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧汉堡完成签到 ,获得积分10
刚刚
科研通AI2S应助相因采纳,获得10
1秒前
1秒前
舒克大王发布了新的文献求助10
2秒前
bkagyin应助等待靖儿采纳,获得10
3秒前
点点发布了新的文献求助10
3秒前
syjssxwz发布了新的文献求助10
3秒前
罗擎发布了新的文献求助10
4秒前
嗯嗯发布了新的文献求助10
4秒前
5秒前
Ava应助Asuka采纳,获得10
5秒前
7秒前
leclare完成签到,获得积分10
8秒前
addi111完成签到,获得积分10
9秒前
10秒前
契咯发布了新的文献求助30
11秒前
XxxxxxENT完成签到,获得积分10
11秒前
12秒前
Orange应助ohooo采纳,获得10
13秒前
zhou发布了新的文献求助10
14秒前
迟迟完成签到 ,获得积分20
15秒前
15秒前
落清欢发布了新的文献求助10
16秒前
科研通AI6应助契咯采纳,获得30
16秒前
kgrvlm完成签到 ,获得积分10
16秒前
wuli林完成签到,获得积分10
17秒前
George发布了新的文献求助200
17秒前
qianlan发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
20秒前
科研通AI6应助还行吧采纳,获得10
20秒前
20秒前
jiaao完成签到,获得积分10
21秒前
567发布了新的文献求助10
22秒前
科研通AI6应助邪恶小天使采纳,获得30
22秒前
kimon发布了新的文献求助10
23秒前
姜姜关注了科研通微信公众号
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462695
求助须知:如何正确求助?哪些是违规求助? 4567400
关于积分的说明 14310270
捐赠科研通 4493273
什么是DOI,文献DOI怎么找? 2461536
邀请新用户注册赠送积分活动 1450570
关于科研通互助平台的介绍 1425885