Diagnostic capability of artificial intelligence tools for detecting and classifying odontogenic cysts and tumors: A systematic review and meta-analysis

角化囊肿 成釉细胞瘤 牙源性的 诊断准确性 医学 射线照相术 人工智能 放射科 卷积神经网络 计算机科学 病理 牙科 上颌骨
作者
Renata Santos Fedato Tobias,Ana Beatriz Teodoro,Karine Evangelista,André Ferreira Leite,José Valladares‐Neto,Brunno Santos de Freitas Silva,Fernanda Paula Yamamoto‐Silva,Fabiana T. Almeida,Maria Alves Garcia Silva
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier]
卷期号:138 (3): 414-426
标识
DOI:10.1016/j.oooo.2024.03.004
摘要

Objective To evaluate the diagnostic capability of artificial intelligence (AI) for detecting and classifying odontogenic cysts and tumors, with special emphasis on odontogenic keratocyst (OKC) and ameloblastoma. Study design Nine electronic databases and the gray literature were examined. Human-based studies using AI algorithms to detect or classify odontogenic cysts and tumors by using panoramic radiographs or CBCT were included. Diagnostic tests were evaluated, and a meta-analysis was performed for classifying OKCs and ameloblastomas. Heterogeneity, risk of bias, and certainty of evidence were evaluated. Results Twelve studies concluded that AI is a promising tool for the detection and/or classification of lesions, producing high diagnostic test values. Three articles assessed the sensitivity of convolutional neural networks in classifying similar lesions using panoramic radiographs, specifically OKC and ameloblastoma. The accuracy was 0.893 (95% CI 0.832 to 0.954). AI applied to cone beam computed tomography produced superior accuracy based on only 4 studies. The results revealed heterogeneity in the models used, variations in imaging examinations, and discrepancies in the presentation of metrics. Conclusion AI tools exhibited a relatively high level of accuracy in detecting and classifying OKC and ameloblastoma. Panoramic radiography appears to be an accurate method for AI-based classification of OKC and ameloblastoma, albeit with a low level of certainty. The accuracy of CBCT model data appeared to be high and promising, although with limited available data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到,获得积分10
刚刚
学术小牛完成签到,获得积分10
刚刚
天天快乐应助洁净的白凡采纳,获得30
刚刚
黄兆强完成签到 ,获得积分10
刚刚
Owen应助靖旎采纳,获得10
1秒前
小二郎应助小冯采纳,获得10
1秒前
Ikaros发布了新的文献求助10
1秒前
2秒前
科研通AI6应助AKA采纳,获得10
4秒前
4秒前
Lucas应助大辉采纳,获得10
5秒前
5秒前
5秒前
slycmd发布了新的文献求助10
7秒前
上官若男应助bb采纳,获得10
8秒前
寒冷天亦发布了新的文献求助10
9秒前
白衣修身发布了新的文献求助10
9秒前
10秒前
壮观的夏蓉完成签到,获得积分0
11秒前
搜集达人应助如风采纳,获得10
12秒前
紫薇发布了新的文献求助10
12秒前
学吧发布了新的文献求助10
12秒前
CipherSage应助淡定茉莉采纳,获得10
12秒前
Ikaros完成签到,获得积分10
13秒前
晴空万里完成签到 ,获得积分10
14秒前
14秒前
15秒前
寒冷天亦完成签到,获得积分10
15秒前
sunoopp发布了新的文献求助10
17秒前
活泼的巧曼完成签到,获得积分10
18秒前
正直的蚂蚁完成签到,获得积分20
18秒前
19秒前
19秒前
19秒前
Yasmine完成签到 ,获得积分10
20秒前
bb发布了新的文献求助10
20秒前
20秒前
六尺巷发布了新的文献求助10
21秒前
22秒前
乔an发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548