角化囊肿
成釉细胞瘤
牙源性的
诊断准确性
医学
射线照相术
人工智能
放射科
卷积神经网络
计算机科学
病理
牙科
上颌骨
作者
Renata Santos Fedato Tobias,Ana Beatriz Teodoro,Karine Evangelista,André Ferreira Leite,José Valladares‐Neto,Brunno Santos de Freitas Silva,Fernanda Paula Yamamoto‐Silva,Fabiana T. Almeida,Maria Alves Garcia Silva
标识
DOI:10.1016/j.oooo.2024.03.004
摘要
Objective To evaluate the diagnostic capability of artificial intelligence (AI) for detecting and classifying odontogenic cysts and tumors, with special emphasis on odontogenic keratocyst (OKC) and ameloblastoma. Study design Nine electronic databases and the gray literature were examined. Human-based studies using AI algorithms to detect or classify odontogenic cysts and tumors by using panoramic radiographs or CBCT were included. Diagnostic tests were evaluated, and a meta-analysis was performed for classifying OKCs and ameloblastomas. Heterogeneity, risk of bias, and certainty of evidence were evaluated. Results Twelve studies concluded that AI is a promising tool for the detection and/or classification of lesions, producing high diagnostic test values. Three articles assessed the sensitivity of convolutional neural networks in classifying similar lesions using panoramic radiographs, specifically OKC and ameloblastoma. The accuracy was 0.893 (95% CI 0.832 to 0.954). AI applied to cone beam computed tomography produced superior accuracy based on only 4 studies. The results revealed heterogeneity in the models used, variations in imaging examinations, and discrepancies in the presentation of metrics. Conclusion AI tools exhibited a relatively high level of accuracy in detecting and classifying OKC and ameloblastoma. Panoramic radiography appears to be an accurate method for AI-based classification of OKC and ameloblastoma, albeit with a low level of certainty. The accuracy of CBCT model data appeared to be high and promising, although with limited available data.
科研通智能强力驱动
Strongly Powered by AbleSci AI