Development and validation of age-specific predictive equations for total energy expenditure and physical activity levels for older adults

人体测量学 千克 线性回归 人口 厘米 数学 金标准(测试) 医学 协议限制 基础代谢率 标准误差 能源消耗 变异系数 动物科学 代谢当量 回归分析 体力活动 决定系数 人口学 统计 体重 核医学 物理疗法 内科学 外科 生物 社会学 环境卫生
作者
Judi Porter,Leigh C. Ward,Kay Nguo,A. Ward,Zoe E. Davidson,Simone Gibson,Ross L. Prentice,Marian L. Neuhouser,Helen Truby
出处
期刊:The American Journal of Clinical Nutrition [Elsevier BV]
卷期号:119 (5): 1111-1121 被引量:1
标识
DOI:10.1016/j.ajcnut.2024.02.005
摘要

Predicting energy requirements for older adults is compromised by the underpinning data being extrapolated from younger adults. To generate and validate new total energy expenditure (TEE) predictive equations specifically for older adults using readily available measures (age, weight, height) and to generate and test new physical activity level (PAL) values derived from 1) reference method of indirect calorimetry and 2) predictive equations in adults aged ≥65 y. TEE derived from "gold standard" methods from n = 1657 (n = 1019 females, age range 65–90 y), was used to generate PAL values. PAL ranged 1.28–2.05 for males and 1.26–2.06 for females. Physical activity (PA) coefficients were also estimated and categorized (inactive to very active) from population means. Nonlinear regression was used to develop prediction equations for estimating TEE. Double cross-validation in a randomized, sex-stratified, age-matched 50:50 split, and leave one out cross-validation were performed. Comparisons were made with existing equations. Equations predicting TEE using the Institute of Medicine method are as follows: For males, TEE = −5680.17 − 17.50 × age (years) + PA coefficient × (6.96 × weight [kilograms] + 44.21 × height [centimeters]) + 1.13 × resting metabolic rate (RMR) (kilojoule/day). For females, TEE = −5290.72 − 8.38 × age (years) + PA coefficient × (9.77 × weight [kilograms] + 41.51 × height [centimeters]) + 1.05 × RMR (kilojoule/day), where PA coefficient values range from 1 (inactive) to 1.51 (highly active) in males and 1 to 1.44 in females respectively. Predictive performance for TEE from anthropometric variables and population mean PA was moderate with limits of agreement approximately ±30%. This improved to ±20% if PA was adjusted for activity category (inactive, low active, active, and very active). Where RMR was included as a predictor variable, the performance improved further to ±10% with a median absolute prediction error of approximately 4%. These new TEE prediction equations require only simple anthropometric data and are accurate and reproducible at a group level while performing better than existing equations. Substantial individual variability in PAL in older adults is the major source of variation when applied at an individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy完成签到 ,获得积分10
1秒前
1秒前
Justice完成签到,获得积分10
2秒前
2秒前
2秒前
领导范儿应助plq采纳,获得10
2秒前
Tomin发布了新的文献求助10
2秒前
dongdong发布了新的文献求助10
2秒前
Dream点壹完成签到,获得积分10
3秒前
小玉应助萌酱采纳,获得10
4秒前
4秒前
坚强白容完成签到,获得积分10
4秒前
汉堡包应助Dr Monkey采纳,获得10
4秒前
人不犯二枉少年完成签到,获得积分10
5秒前
曦阳完成签到,获得积分10
5秒前
忆茶戏完成签到 ,获得积分10
5秒前
5秒前
天天快乐应助满意依白采纳,获得10
5秒前
可爱迷人的反派角色完成签到,获得积分10
5秒前
ps2666发布了新的文献求助30
5秒前
6秒前
HeLL0完成签到 ,获得积分10
6秒前
7秒前
7秒前
完美世界应助foj采纳,获得50
7秒前
8秒前
8秒前
hkh发布了新的文献求助10
8秒前
乐乐应助grandtough采纳,获得15
8秒前
希望天下0贩的0应助PXP采纳,获得10
9秒前
9秒前
zho发布了新的文献求助10
9秒前
微笑的芯完成签到 ,获得积分10
9秒前
CodeCraft应助Paradox采纳,获得10
9秒前
小鹿完成签到,获得积分10
10秒前
careS完成签到,获得积分10
10秒前
10秒前
昏睡的蟠桃应助灰木采纳,获得30
10秒前
TEO完成签到,获得积分10
10秒前
圆圆发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406