Vulnerability Detection Based on Enhanced Graph Representation Learning

计算机科学 图形 代表(政治) 人工智能 理论计算机科学 政治 政治学 法学
作者
Peng Xiao,Qibin Xiao,Xusheng Zhang,Yumei Wu,Fengyu Yang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5120-5135 被引量:5
标识
DOI:10.1109/tifs.2024.3392536
摘要

The detection of program vulnerabilities remains a challenging task in software security. The existing vulnerability detection methods rarely consider the multidimensional feature space complementarity of program graph structures, which easily overlooks contextual environment features and syntax structure features. This disadvantage leads to insufficient performance in capturing complex structural features, which hinders the improvement in detection accuracy. To address this issue, this paper introduces a novel vulnerability detection method, EnGS2F, which adopts the representation learning of an enhanced graph structure to improve the efficiency of capturing vulnerability information. On the dimension of the graph structure, a context relationship graph (CRG) is integrated on the basis of a program dependency graph (PDG) to enrich the global structural context representation. On the dimension of graph nodes, abstract syntax tree (AST) embedding and paragraph embedding are integrated to solve the problem of insufficient feature space complementarity. Moreover, the combination of a gated graph neural network (GGNN) with a graph attention mechanism further improves the learning performance of the enhanced graph structure. EnGS2F has been rigorously evaluated on program slices from open-source vulnerability datasets, demonstrating significant improvements over current competitive methods in detecting program vulnerabilities. Specifically, EnGS2F achieved a significant increase in the F1 score, outperforming existing technologies by 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助张环采纳,获得10
刚刚
1秒前
2秒前
彭于晏应助莹ing采纳,获得10
3秒前
别梦寒发布了新的文献求助10
5秒前
7秒前
skj你考六级完成签到,获得积分10
7秒前
可爱的函函应助行歌采纳,获得10
9秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
Dean应助科研通管家采纳,获得150
11秒前
乐乐应助科研通管家采纳,获得20
11秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
谷粱姿应助科研通管家采纳,获得10
12秒前
tuanheqi应助科研通管家采纳,获得100
12秒前
量子星尘发布了新的文献求助10
12秒前
黄筱筱应助科研通管家采纳,获得30
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
12秒前
黑糖珍珠完成签到 ,获得积分10
13秒前
小怪兽发布了新的文献求助10
13秒前
予你发布了新的文献求助10
14秒前
15秒前
15秒前
惠飞薇发布了新的文献求助10
17秒前
xm发布了新的文献求助10
17秒前
赘婿应助yyu采纳,获得10
18秒前
19秒前
windows发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924698
求助须知:如何正确求助?哪些是违规求助? 4194850
关于积分的说明 13029597
捐赠科研通 3966579
什么是DOI,文献DOI怎么找? 2174058
邀请新用户注册赠送积分活动 1191544
关于科研通互助平台的介绍 1101060