Vulnerability Detection Based on Enhanced Graph Representation Learning

计算机科学 图形 代表(政治) 人工智能 理论计算机科学 政治 政治学 法学
作者
Peng Xiao,Qibin Xiao,Xusheng Zhang,Yumei Wu,Fengyu Yang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5120-5135 被引量:10
标识
DOI:10.1109/tifs.2024.3392536
摘要

The detection of program vulnerabilities remains a challenging task in software security. The existing vulnerability detection methods rarely consider the multidimensional feature space complementarity of program graph structures, which easily overlooks contextual environment features and syntax structure features. This disadvantage leads to insufficient performance in capturing complex structural features, which hinders the improvement in detection accuracy. To address this issue, this paper introduces a novel vulnerability detection method, EnGS2F, which adopts the representation learning of an enhanced graph structure to improve the efficiency of capturing vulnerability information. On the dimension of the graph structure, a context relationship graph (CRG) is integrated on the basis of a program dependency graph (PDG) to enrich the global structural context representation. On the dimension of graph nodes, abstract syntax tree (AST) embedding and paragraph embedding are integrated to solve the problem of insufficient feature space complementarity. Moreover, the combination of a gated graph neural network (GGNN) with a graph attention mechanism further improves the learning performance of the enhanced graph structure. EnGS2F has been rigorously evaluated on program slices from open-source vulnerability datasets, demonstrating significant improvements over current competitive methods in detecting program vulnerabilities. Specifically, EnGS2F achieved a significant increase in the F1 score, outperforming existing technologies by 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄风应助biu采纳,获得10
刚刚
刚刚
小马甲应助price采纳,获得10
刚刚
1秒前
浮游应助knell94采纳,获得10
2秒前
科研通AI6应助cwq采纳,获得10
2秒前
浮游应助cwq采纳,获得10
2秒前
Jasper应助cwq采纳,获得10
2秒前
赘婿应助cwq采纳,获得10
2秒前
充电宝应助cwq采纳,获得10
2秒前
所所应助cwq采纳,获得10
2秒前
Jasper应助小康采纳,获得10
2秒前
思源应助cwq采纳,获得10
2秒前
荷包蛋发布了新的文献求助10
3秒前
zrk发布了新的文献求助10
3秒前
sakura发布了新的文献求助10
3秒前
4秒前
4秒前
高高完成签到,获得积分10
4秒前
4秒前
5秒前
踏实汉堡完成签到,获得积分10
5秒前
5秒前
马马发布了新的文献求助10
5秒前
6秒前
6秒前
浮游应助孙朱珠采纳,获得10
6秒前
7秒前
道边的路人甲完成签到,获得积分10
7秒前
窗外的你发布了新的文献求助10
8秒前
耍酷发布了新的文献求助10
8秒前
8秒前
可爱的函函应助荷包蛋采纳,获得10
9秒前
陈陈陈完成签到,获得积分20
9秒前
雷锋发布了新的文献求助10
10秒前
whoKnows应助火火采纳,获得20
10秒前
10秒前
hezaly发布了新的文献求助10
11秒前
斯文败类应助不安的冷荷采纳,获得10
11秒前
我口中说的永远完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336