Vulnerability Detection Based on Enhanced Graph Representation Learning

计算机科学 图形 代表(政治) 人工智能 理论计算机科学 政治 政治学 法学
作者
Peng Xiao,Qibin Xiao,Xusheng Zhang,Yumei Wu,Fengyu Yang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5120-5135 被引量:10
标识
DOI:10.1109/tifs.2024.3392536
摘要

The detection of program vulnerabilities remains a challenging task in software security. The existing vulnerability detection methods rarely consider the multidimensional feature space complementarity of program graph structures, which easily overlooks contextual environment features and syntax structure features. This disadvantage leads to insufficient performance in capturing complex structural features, which hinders the improvement in detection accuracy. To address this issue, this paper introduces a novel vulnerability detection method, EnGS2F, which adopts the representation learning of an enhanced graph structure to improve the efficiency of capturing vulnerability information. On the dimension of the graph structure, a context relationship graph (CRG) is integrated on the basis of a program dependency graph (PDG) to enrich the global structural context representation. On the dimension of graph nodes, abstract syntax tree (AST) embedding and paragraph embedding are integrated to solve the problem of insufficient feature space complementarity. Moreover, the combination of a gated graph neural network (GGNN) with a graph attention mechanism further improves the learning performance of the enhanced graph structure. EnGS2F has been rigorously evaluated on program slices from open-source vulnerability datasets, demonstrating significant improvements over current competitive methods in detecting program vulnerabilities. Specifically, EnGS2F achieved a significant increase in the F1 score, outperforming existing technologies by 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
2秒前
maomao201026发布了新的文献求助10
2秒前
yan123完成签到,获得积分10
2秒前
共享精神应助chai采纳,获得10
2秒前
Apricity应助wuxunxun2015采纳,获得10
2秒前
2秒前
tina完成签到,获得积分10
3秒前
科研顺利发布了新的文献求助10
4秒前
yang123发布了新的文献求助10
4秒前
5秒前
zzz发布了新的文献求助10
5秒前
熊猫发布了新的文献求助10
5秒前
5秒前
www发布了新的文献求助10
6秒前
6秒前
琳67发布了新的文献求助10
6秒前
cult发布了新的文献求助10
6秒前
明理飞风完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
FashionBoy应助肖紫若采纳,获得10
8秒前
lelele发布了新的文献求助10
8秒前
AnasYusuf发布了新的文献求助30
8秒前
kk发布了新的文献求助10
8秒前
科目三应助陈艺鹏采纳,获得10
8秒前
8秒前
科研通AI6应助神奇小药丸采纳,获得10
8秒前
9秒前
活力砖家完成签到,获得积分10
9秒前
9秒前
jiysh发布了新的文献求助10
10秒前
guojingjing发布了新的文献求助10
10秒前
邓敬燃发布了新的文献求助10
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592