微泡
小RNA
癌症研究
流式细胞术
外体
生物
细胞培养
分子生物学
基因
生物化学
遗传学
作者
Lu Wang,Huijuan Liu,Qinglu Wu,Yiqian Liu,Zhenpeng Yan,Guohui Chen,Yao Shang,Songrui Xu,Qichao Zhou,Ting Yan,Xiaolong Cheng
标识
DOI:10.1038/s41417-024-00774-8
摘要
Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.
科研通智能强力驱动
Strongly Powered by AbleSci AI