SAM-Att: A Prompt-Free SAM-Related Model With an Attention Module for Automatic Segmentation of the Left Ventricle in Echocardiography

分割 计算机科学 人工智能 心室 内科学 医学 心脏病学
作者
Yaqi Zhu,Changchun Xiong,Heng Zhao,Yudong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 50335-50346 被引量:1
标识
DOI:10.1109/access.2024.3384383
摘要

Studying the structure and function of the heart through the left ventricle is one of the most common methods for diagnosing heart diseases. The automatic segmentation of the left ventricle can be achieved through deep learning techniques, and researchers have conducted a series of explorations in this field. Recently, the segment anything model (SAM) has achieved significant success in the field of natural images, sparking considerable interest among researchers. This has led them to investigate whether SAM can also be successfully applied in the medical imaging domain. The SAM model's interactive interface enables zero-shot and few-shot learning in the natural image domain, achieving accurate segmentation tasks. However, there are certain limitations in the automatic segmentation of medical images, specifically in the context of natural image cues such as points, boxes, and text prompts. To address this issue, this paper explores the performance of a prompt-free SAM-related model with an attention module for automatic segmentation of the left ventricle in echocardiography, named as SAM-Att. The model employs a low-rank fine-tuning strategy in the upstream, introduces an attention mechanism in the downstream, and successfully accomplishes the automatic segmentation task of the left ventricle with the support of weight files pretrained on the SAM large model. The SAM-Att model achieves dice similarity coefficient (DSC) of 94.49% and hausdorff distance (HD) of 3.505 mm on the test set. The accuracy reaches 98.83%, with precision of 93.65% and recall of 94.77%. A performance comparison of SAM-Att with other SAM-related models (SAM-b, MSA, Sam-CNN, AutoSAM, SAMed) is conducted on the same echocardiography dataset. The results indicate that the left ventricle automatic segmentation achieved the best performance when using SAM-Att.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善学以致用应助无尘泪采纳,获得10
刚刚
blank12发布了新的文献求助10
1秒前
1秒前
bian发布了新的文献求助10
1秒前
kang_aaa关注了科研通微信公众号
1秒前
周z2351198754完成签到,获得积分10
2秒前
张紫茹发布了新的文献求助10
2秒前
Owen应助外向的芒果采纳,获得10
2秒前
F123发布了新的文献求助10
2秒前
fuuu发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Z.zz发布了新的文献求助10
3秒前
3秒前
WFZ发布了新的文献求助10
4秒前
好事发生发布了新的文献求助10
4秒前
阿勒完成签到,获得积分10
4秒前
4秒前
英雄小伙伴完成签到,获得积分10
4秒前
完美世界应助小杨采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
follow发布了新的文献求助10
7秒前
zy发布了新的文献求助10
8秒前
ckz发布了新的文献求助10
9秒前
积极松完成签到 ,获得积分10
9秒前
善学以致用应助淡淡的凡采纳,获得10
9秒前
wanci应助老肖采纳,获得10
9秒前
10秒前
杨宝仪发布了新的文献求助10
10秒前
hu发布了新的文献求助10
11秒前
无限的小懒虫完成签到,获得积分10
11秒前
图图超人发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618