SAM-Att: A Prompt-free SAM-related Model with an Attention Module for Automatic Segmentation of the Left Ventricle in Echocardiography

分割 计算机科学 人工智能 豪斯多夫距离 心室 图像分割 计算机视觉 背景(考古学) Sørensen–骰子系数 试验装置 模式识别(心理学) 医学 心脏病学 生物 古生物学
作者
Yaqi Zhu,Changchun Xiong,Heng Zhao,Yu‐Dong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 50335-50346
标识
DOI:10.1109/access.2024.3384383
摘要

Studying the structure and function of the heart through the left ventricle is one of the most common methods for diagnosing heart diseases.The automatic segmentation of the left ventricle can be achieved through deep learning techniques, and researchers have conducted a series of explorations in this field.Recently, the segment anything model (SAM) has achieved significant success in the field of natural images, sparking considerable interest among researchers.This has led them to investigate whether SAM can also be successfully applied in the medical imaging domain.The SAM model's interactive interface enables zero-shot and few-shot learning in the natural image domain, achieving accurate segmentation tasks.However, there are certain limitations in the automatic segmentation of medical images, specifically in the context of natural image cues such as points, boxes, and text prompts.To address this issue, this paper explores the performance of a prompt-free SAM-related model with an attention module for automatic segmentation of the left ventricle in echocardiography, named as SAM-Att.The model employs a low-rank fine-tuning strategy in the upstream, introduces an attention mechanism in the downstream, and successfully accomplishes the automatic segmentation task of the left ventricle with the support of weight files pretrained on the SAM large model.The SAM-Att model achieves dice similarity coefficient (DSC) of 94.49% and hausdorff distance (HD) of 3.505 mm on the test set.The accuracy reaches 98.83%, with precision of 93.65% and recall of 94.77%.A performance comparison of SAM-Att with other SAM-related models (SAM-b, MSA, Sam-CNN, AutoSAM, SAMed) is conducted on the same echocardiography dataset.The results indicate that the left ventricle automatic segmentation achieved the best performance when using SAM-Att.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
领导范儿应助Fury采纳,获得10
3秒前
Gilbert发布了新的文献求助10
4秒前
坚强的易巧完成签到,获得积分10
6秒前
苏七完成签到,获得积分10
7秒前
huanger发布了新的文献求助10
7秒前
9秒前
顾矜应助远方的蓝风铃采纳,获得10
9秒前
Mrmiss666完成签到,获得积分20
11秒前
灵巧的十八完成签到 ,获得积分10
11秒前
椿人完成签到 ,获得积分10
11秒前
NII发布了新的文献求助10
13秒前
晚枫应助Gilbert采纳,获得10
13秒前
懒YY捉小J完成签到 ,获得积分10
14秒前
Lz完成签到,获得积分10
16秒前
郭郭完成签到 ,获得积分10
18秒前
11632发布了新的文献求助10
19秒前
贾舒涵发布了新的文献求助10
19秒前
忧伤的冰薇完成签到 ,获得积分10
21秒前
吗喽小祁完成签到,获得积分10
21秒前
NII完成签到,获得积分10
22秒前
花椒鱼完成签到 ,获得积分10
26秒前
柚子完成签到 ,获得积分10
27秒前
27秒前
27秒前
30秒前
30秒前
30秒前
smm发布了新的文献求助10
31秒前
林..发布了新的文献求助10
32秒前
李爱国应助科研通管家采纳,获得30
34秒前
天天快乐应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得30
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
34秒前
35秒前
风和日li完成签到,获得积分0
35秒前
pokexuejiao发布了新的文献求助30
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023