清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SAM-Att: A Prompt-Free SAM-Related Model With an Attention Module for Automatic Segmentation of the Left Ventricle in Echocardiography

分割 计算机科学 人工智能 心室 内科学 医学 心脏病学
作者
Yaqi Zhu,Changchun Xiong,Heng Zhao,Yudong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 50335-50346 被引量:1
标识
DOI:10.1109/access.2024.3384383
摘要

Studying the structure and function of the heart through the left ventricle is one of the most common methods for diagnosing heart diseases. The automatic segmentation of the left ventricle can be achieved through deep learning techniques, and researchers have conducted a series of explorations in this field. Recently, the segment anything model (SAM) has achieved significant success in the field of natural images, sparking considerable interest among researchers. This has led them to investigate whether SAM can also be successfully applied in the medical imaging domain. The SAM model's interactive interface enables zero-shot and few-shot learning in the natural image domain, achieving accurate segmentation tasks. However, there are certain limitations in the automatic segmentation of medical images, specifically in the context of natural image cues such as points, boxes, and text prompts. To address this issue, this paper explores the performance of a prompt-free SAM-related model with an attention module for automatic segmentation of the left ventricle in echocardiography, named as SAM-Att. The model employs a low-rank fine-tuning strategy in the upstream, introduces an attention mechanism in the downstream, and successfully accomplishes the automatic segmentation task of the left ventricle with the support of weight files pretrained on the SAM large model. The SAM-Att model achieves dice similarity coefficient (DSC) of 94.49% and hausdorff distance (HD) of 3.505 mm on the test set. The accuracy reaches 98.83%, with precision of 93.65% and recall of 94.77%. A performance comparison of SAM-Att with other SAM-related models (SAM-b, MSA, Sam-CNN, AutoSAM, SAMed) is conducted on the same echocardiography dataset. The results indicate that the left ventricle automatic segmentation achieved the best performance when using SAM-Att.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
莨菪发布了新的文献求助10
6秒前
tt完成签到,获得积分10
15秒前
斯文的清涟完成签到,获得积分10
30秒前
36秒前
盈盈发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
1分钟前
1分钟前
老马哥完成签到 ,获得积分0
1分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
2分钟前
Penny完成签到,获得积分10
2分钟前
Penny发布了新的文献求助10
2分钟前
盈盈发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
meeteryu完成签到,获得积分10
2分钟前
SciGPT应助盈盈采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
3分钟前
jjy发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160