SAM-Att: A Prompt-free SAM-related Model with an Attention Module for Automatic Segmentation of the Left Ventricle in Echocardiography

分割 计算机科学 人工智能 豪斯多夫距离 心室 图像分割 计算机视觉 背景(考古学) Sørensen–骰子系数 试验装置 模式识别(心理学) 医学 心脏病学 古生物学 生物
作者
Yaqi Zhu,Changchun Xiong,Heng Zhao,Yu‐Dong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 50335-50346
标识
DOI:10.1109/access.2024.3384383
摘要

Studying the structure and function of the heart through the left ventricle is one of the most common methods for diagnosing heart diseases.The automatic segmentation of the left ventricle can be achieved through deep learning techniques, and researchers have conducted a series of explorations in this field.Recently, the segment anything model (SAM) has achieved significant success in the field of natural images, sparking considerable interest among researchers.This has led them to investigate whether SAM can also be successfully applied in the medical imaging domain.The SAM model's interactive interface enables zero-shot and few-shot learning in the natural image domain, achieving accurate segmentation tasks.However, there are certain limitations in the automatic segmentation of medical images, specifically in the context of natural image cues such as points, boxes, and text prompts.To address this issue, this paper explores the performance of a prompt-free SAM-related model with an attention module for automatic segmentation of the left ventricle in echocardiography, named as SAM-Att.The model employs a low-rank fine-tuning strategy in the upstream, introduces an attention mechanism in the downstream, and successfully accomplishes the automatic segmentation task of the left ventricle with the support of weight files pretrained on the SAM large model.The SAM-Att model achieves dice similarity coefficient (DSC) of 94.49% and hausdorff distance (HD) of 3.505 mm on the test set.The accuracy reaches 98.83%, with precision of 93.65% and recall of 94.77%.A performance comparison of SAM-Att with other SAM-related models (SAM-b, MSA, Sam-CNN, AutoSAM, SAMed) is conducted on the same echocardiography dataset.The results indicate that the left ventricle automatic segmentation achieved the best performance when using SAM-Att.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫滚滚发布了新的文献求助10
1秒前
lunjianchi发布了新的文献求助10
1秒前
充电宝应助风华正茂采纳,获得10
1秒前
完美世界应助boyue采纳,获得10
4秒前
科目三应助冷静的奇迹采纳,获得10
5秒前
李健应助胡图图采纳,获得10
6秒前
7秒前
852应助反义词采纳,获得10
8秒前
9秒前
9秒前
666发布了新的文献求助10
10秒前
唐唐发布了新的文献求助10
10秒前
11秒前
蓦然回首完成签到,获得积分10
13秒前
思源应助123采纳,获得10
13秒前
星辰大海应助张家源采纳,获得10
13秒前
13秒前
14秒前
Liixy发布了新的文献求助10
14秒前
儒雅HR发布了新的文献求助10
15秒前
飘逸锦程完成签到 ,获得积分10
15秒前
penghaha发布了新的文献求助10
16秒前
18秒前
18秒前
风华正茂发布了新的文献求助10
18秒前
zxh656691发布了新的文献求助10
18秒前
搜集达人应助老十七采纳,获得10
19秒前
19秒前
搜集达人应助冷静的奇迹采纳,获得10
19秒前
儒雅HR完成签到,获得积分10
21秒前
xtt发布了新的文献求助10
21秒前
penghaha完成签到,获得积分10
21秒前
威武鞅完成签到,获得积分10
23秒前
23秒前
23秒前
redking发布了新的文献求助30
24秒前
轻松的惜芹应助lunjianchi采纳,获得10
25秒前
科研通AI5应助Liixy采纳,获得10
26秒前
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517