Residential building energy consumption estimation: A novel ensemble and hybrid machine learning approach

计算机科学 能源消耗 机器学习 估计 人工智能 消费(社会学) 集成学习 能量(信号处理) 统计 数学 生态学 社会科学 管理 社会学 经济 生物
作者
Behnam Sadaghat,Sadegh Afzal,Ali Javadzade Khiavi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 123934-123934 被引量:13
标识
DOI:10.1016/j.eswa.2024.123934
摘要

In recent decades, there has been a substantial rise in both worldwide energy consumption and the accompanying increase in Carbon Dioxide (CO2) emissions, primarily propelled by population growth and the escalating demand for personal comfort. Operational energy consumption in buildings constitutes about 30% of the world's total final energy usage, underscoring the significance of predicting building energy usage for effective energy planning, management, and conservation. This study has enhanced the prediction of heating load (HL) and cooling loads (CL) for residential buildings using novel and dependable machine learning (ML) techniques. The study utilized two base models: Adaptive Boosting (ADA) and Extreme Gradient Boosting (XGBoost). An ensemble consisting of ADA and XGB was constructed to improve the model's performance, aligning with the principles of the Dempster-Shafer theory. To optimize the efficiency of ADA and XGB, five innovative optimizers, namely Victoria Amazonica Optimization (VAO), Giant Trevally Optimizer (GTO), Covariance Matrix Adaptation Evolution Strategy (CMAES), Coyote Optimization Algorithm (COA), and Mountain Gazelle Optimizer (MGO), were integrated. Statistical analysis has been employed to evaluate the performance of the proposed models. The results highlight the effectiveness of CMAES in optimizing the XGB and ADA models for predicting HL and CL. The most accurate result was achieved by the XGCM hybrid model, as evidenced by the impressive total R2 value of 0.9934 in HL and 0.9911 in CL prediction. The experimental findings illustrate that the suggested approach exhibits superior predictive performance across various scenarios of building energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ludong_0应助pppy采纳,获得10
1秒前
思源应助bonnie采纳,获得10
1秒前
英姑应助王克采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
cy发布了新的文献求助10
2秒前
御兽王者完成签到,获得积分20
2秒前
2秒前
深情安青应助奔波儿灞采纳,获得10
3秒前
活泼的问夏完成签到,获得积分10
3秒前
CipherSage应助105400155采纳,获得10
3秒前
pdf发布了新的文献求助30
4秒前
完美世界应助燕子采纳,获得10
4秒前
5秒前
5秒前
微笑海冬完成签到,获得积分10
5秒前
lisier发布了新的文献求助10
5秒前
路遥完成签到,获得积分20
5秒前
脑洞疼应助alan采纳,获得10
5秒前
6秒前
Shirely完成签到,获得积分10
6秒前
洁净春天完成签到,获得积分10
7秒前
SYLH应助aa121599采纳,获得10
7秒前
HPP123完成签到,获得积分10
7秒前
胡柱柱完成签到,获得积分10
7秒前
冷艳的火龙果完成签到,获得积分10
8秒前
ee发布了新的文献求助10
9秒前
9秒前
桃子应助鹿多多采纳,获得10
9秒前
Akim应助吃点红糖馒头采纳,获得10
9秒前
李爱国应助正丁基锂采纳,获得10
9秒前
归尘发布了新的文献求助10
10秒前
10秒前
10秒前
胡柱柱发布了新的文献求助10
10秒前
Orange应助1235采纳,获得10
11秒前
Shirely发布了新的文献求助10
11秒前
11秒前
pdf完成签到,获得积分20
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023175
求助须知:如何正确求助?哪些是违规求助? 3563272
关于积分的说明 11341846
捐赠科研通 3294815
什么是DOI,文献DOI怎么找? 1814780
邀请新用户注册赠送积分活动 889460
科研通“疑难数据库(出版商)”最低求助积分说明 812964