Residential building energy consumption estimation: A novel ensemble and hybrid machine learning approach

计算机科学 能源消耗 机器学习 估计 人工智能 消费(社会学) 集成学习 能量(信号处理) 统计 数学 生态学 社会科学 管理 社会学 经济 生物
作者
Behnam Sadaghat,Sadegh Afzal,Ali Javadzade Khiavi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:251: 123934-123934 被引量:13
标识
DOI:10.1016/j.eswa.2024.123934
摘要

In recent decades, there has been a substantial rise in both worldwide energy consumption and the accompanying increase in Carbon Dioxide (CO2) emissions, primarily propelled by population growth and the escalating demand for personal comfort. Operational energy consumption in buildings constitutes about 30% of the world's total final energy usage, underscoring the significance of predicting building energy usage for effective energy planning, management, and conservation. This study has enhanced the prediction of heating load (HL) and cooling loads (CL) for residential buildings using novel and dependable machine learning (ML) techniques. The study utilized two base models: Adaptive Boosting (ADA) and Extreme Gradient Boosting (XGBoost). An ensemble consisting of ADA and XGB was constructed to improve the model's performance, aligning with the principles of the Dempster-Shafer theory. To optimize the efficiency of ADA and XGB, five innovative optimizers, namely Victoria Amazonica Optimization (VAO), Giant Trevally Optimizer (GTO), Covariance Matrix Adaptation Evolution Strategy (CMAES), Coyote Optimization Algorithm (COA), and Mountain Gazelle Optimizer (MGO), were integrated. Statistical analysis has been employed to evaluate the performance of the proposed models. The results highlight the effectiveness of CMAES in optimizing the XGB and ADA models for predicting HL and CL. The most accurate result was achieved by the XGCM hybrid model, as evidenced by the impressive total R2 value of 0.9934 in HL and 0.9911 in CL prediction. The experimental findings illustrate that the suggested approach exhibits superior predictive performance across various scenarios of building energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofei666应助平常从蓉采纳,获得20
1秒前
1秒前
kiwi发布了新的文献求助10
1秒前
tttccc发布了新的文献求助20
1秒前
vella关注了科研通微信公众号
2秒前
2秒前
桐桐应助ylq采纳,获得10
2秒前
3秒前
junze发布了新的文献求助10
3秒前
Joyce_Jing发布了新的文献求助10
4秒前
4秒前
安静含之发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
胖虎应助wangjing采纳,获得10
6秒前
顾矜应助wangjing采纳,获得10
6秒前
是一个小朋友完成签到,获得积分10
6秒前
打打应助清新的冷松采纳,获得10
7秒前
大模型应助devin22222采纳,获得10
7秒前
赘婿应助muyi采纳,获得10
7秒前
ji发布了新的文献求助10
8秒前
Joyce_Jing完成签到,获得积分10
9秒前
HCLonely应助细腻的溪流采纳,获得10
10秒前
母单花发布了新的文献求助30
10秒前
Gloria2022发布了新的文献求助10
11秒前
11秒前
rgaerva发布了新的文献求助10
11秒前
12秒前
霁星河完成签到,获得积分10
12秒前
12秒前
可可西里应助斯文谷秋采纳,获得30
13秒前
sys549完成签到,获得积分10
13秒前
啧啧啧完成签到,获得积分10
14秒前
有魅力山雁完成签到,获得积分20
15秒前
cjz关注了科研通微信公众号
15秒前
无花果应助Dodobirdzhb采纳,获得10
15秒前
yxy完成签到,获得积分20
15秒前
柴子完成签到,获得积分10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232602
求助须知:如何正确求助?哪些是违规求助? 2879404
关于积分的说明 8211127
捐赠科研通 2546860
什么是DOI,文献DOI怎么找? 1376416
科研通“疑难数据库(出版商)”最低求助积分说明 647609
邀请新用户注册赠送积分活动 622915