Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation

材料科学 极限抗拉强度 层错能 延展性(地球科学) 降水 合金 变形(气象学) 高熵合金 变形机理 沉淀硬化 微观结构 再结晶(地质) 冶金 动态再结晶 复合材料 蠕动 热加工 古生物学 物理 气象学 生物
作者
Liyuan Liu,Yang Zhang,Zhongwu Zhang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:205: 27-41 被引量:2
标识
DOI:10.1016/j.jmst.2024.03.034
摘要

How to achieve high-entropy alloys (HEAs) with ultrahigh strength and ductility is a challenging issue. Precipitation strengthening is one of the methods to significantly enhance strength, but unfortunately, ductility will be lost. To overcome the strength–ductility trade-off, the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging (DA), triggering multiple deformation mechanisms, to obtain HEAs with ultrahigh strength and ductility. First, the effect of precold deformation on precipitation behavior was studied using Ni35(CoFe)55V5Nb5 (at.%) HEA as the object. The results reveal that the activation energy of recrystallization is 112.2 kJ/mol. As the precold-deformation amount increases from 15% to 65%, the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol. The precipitation time shortens, the size of the nanoprecipitate decreases, and the density increases. Subsequently, the thermal treatment parameters were optimized, and the DA process was customized based on the effect of precold deformation on precipitation behavior. High-density L12 nanoprecipitates (∼3.21 × 1025 m−3) were induced in the 65% precold-deformed HEA, which led to the simultaneous formation of twins and stacking fault (SF) networks during deformation. The yield strength (YS), ultimate tensile strength, and ductility of the DA-HEA are ∼2.0 GPa, ∼2.2 GPa, and ∼12.3%, respectively. Compared with the solid solution HEA, the YS of the DA-HEA increased by 1,657 MPa, possessing an astonishing increase of ∼440%. The high YS stems from the precipitation strengthening contributed by the L12 nanoprecipitates and the dislocation strengthening contributed by precold deformation. The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静鑫鹏完成签到,获得积分20
3秒前
4秒前
bairunhua发布了新的文献求助10
5秒前
fhp完成签到,获得积分10
5秒前
ggb完成签到,获得积分10
7秒前
SJL发布了新的文献求助30
8秒前
今后应助钟离的摩拉采纳,获得10
9秒前
10秒前
dlwlrma完成签到,获得积分10
10秒前
10秒前
11秒前
Jinyi发布了新的文献求助10
11秒前
orixero应助xqq采纳,获得10
11秒前
13秒前
迷你的项链完成签到 ,获得积分20
13秒前
13秒前
wuhao发布了新的文献求助10
13秒前
耍酷的丹珍完成签到,获得积分20
13秒前
静然发布了新的文献求助10
15秒前
重要的大神完成签到,获得积分10
16秒前
17秒前
扣子发布了新的文献求助10
17秒前
充电宝应助轩辕唯雪采纳,获得30
17秒前
19秒前
20秒前
21秒前
小马甲应助coco采纳,获得10
21秒前
22秒前
wlq发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
Flyzhang完成签到,获得积分10
24秒前
zhou完成签到 ,获得积分10
24秒前
ding应助zhuiyu采纳,获得10
24秒前
研友_VZG7GZ应助dlwlrma采纳,获得10
24秒前
25秒前
Huang发布了新的文献求助10
25秒前
大明发布了新的文献求助10
25秒前
扣子完成签到,获得积分10
27秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084504
求助须知:如何正确求助?哪些是违规求助? 2737517
关于积分的说明 7545573
捐赠科研通 2387170
什么是DOI,文献DOI怎么找? 1265830
科研通“疑难数据库(出版商)”最低求助积分说明 613169
版权声明 598336