Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation

材料科学 极限抗拉强度 层错能 延展性(地球科学) 降水 合金 变形(气象学) 高熵合金 变形机理 沉淀硬化 微观结构 再结晶(地质) 冶金 动态再结晶 复合材料 蠕动 热加工 气象学 古生物学 物理 生物
作者
Liyuan Liu,Yang Zhang,Zhongwu Zhang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:205: 27-41 被引量:7
标识
DOI:10.1016/j.jmst.2024.03.034
摘要

How to achieve high-entropy alloys (HEAs) with ultrahigh strength and ductility is a challenging issue. Precipitation strengthening is one of the methods to significantly enhance strength, but unfortunately, ductility will be lost. To overcome the strength–ductility trade-off, the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging (DA), triggering multiple deformation mechanisms, to obtain HEAs with ultrahigh strength and ductility. First, the effect of precold deformation on precipitation behavior was studied using Ni35(CoFe)55V5Nb5 (at.%) HEA as the object. The results reveal that the activation energy of recrystallization is 112.2 kJ/mol. As the precold-deformation amount increases from 15% to 65%, the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol. The precipitation time shortens, the size of the nanoprecipitate decreases, and the density increases. Subsequently, the thermal treatment parameters were optimized, and the DA process was customized based on the effect of precold deformation on precipitation behavior. High-density L12 nanoprecipitates (∼3.21 × 1025 m−3) were induced in the 65% precold-deformed HEA, which led to the simultaneous formation of twins and stacking fault (SF) networks during deformation. The yield strength (YS), ultimate tensile strength, and ductility of the DA-HEA are ∼2.0 GPa, ∼2.2 GPa, and ∼12.3%, respectively. Compared with the solid solution HEA, the YS of the DA-HEA increased by 1,657 MPa, possessing an astonishing increase of ∼440%. The high YS stems from the precipitation strengthening contributed by the L12 nanoprecipitates and the dislocation strengthening contributed by precold deformation. The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32完成签到,获得积分20
刚刚
刚刚
2秒前
3秒前
4秒前
4秒前
慕青应助半_采纳,获得10
5秒前
小确幸发布了新的文献求助10
5秒前
哈哈完成签到 ,获得积分10
5秒前
ACoolZc完成签到,获得积分10
6秒前
crx完成签到 ,获得积分10
7秒前
chuanxue发布了新的文献求助10
7秒前
AuCu完成签到,获得积分20
8秒前
ACoolZc发布了新的文献求助10
8秒前
梦龙南舟发布了新的文献求助10
9秒前
9秒前
AuCu发布了新的文献求助10
10秒前
Lipei完成签到,获得积分10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
F_echo应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
yznfly应助切切采纳,获得20
12秒前
小确幸完成签到,获得积分10
13秒前
qi完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
稳重的香萱完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606135
求助须知:如何正确求助?哪些是违规求助? 4690648
关于积分的说明 14864859
捐赠科研通 4704180
什么是DOI,文献DOI怎么找? 2542486
邀请新用户注册赠送积分活动 1508004
关于科研通互助平台的介绍 1472217