Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation

材料科学 极限抗拉强度 层错能 延展性(地球科学) 降水 合金 变形(气象学) 高熵合金 变形机理 沉淀硬化 微观结构 再结晶(地质) 冶金 动态再结晶 复合材料 蠕动 热加工 气象学 古生物学 物理 生物
作者
Liyuan Liu,Yang Zhang,Zhongwu Zhang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:205: 27-41 被引量:7
标识
DOI:10.1016/j.jmst.2024.03.034
摘要

How to achieve high-entropy alloys (HEAs) with ultrahigh strength and ductility is a challenging issue. Precipitation strengthening is one of the methods to significantly enhance strength, but unfortunately, ductility will be lost. To overcome the strength–ductility trade-off, the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging (DA), triggering multiple deformation mechanisms, to obtain HEAs with ultrahigh strength and ductility. First, the effect of precold deformation on precipitation behavior was studied using Ni35(CoFe)55V5Nb5 (at.%) HEA as the object. The results reveal that the activation energy of recrystallization is 112.2 kJ/mol. As the precold-deformation amount increases from 15% to 65%, the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol. The precipitation time shortens, the size of the nanoprecipitate decreases, and the density increases. Subsequently, the thermal treatment parameters were optimized, and the DA process was customized based on the effect of precold deformation on precipitation behavior. High-density L12 nanoprecipitates (∼3.21 × 1025 m−3) were induced in the 65% precold-deformed HEA, which led to the simultaneous formation of twins and stacking fault (SF) networks during deformation. The yield strength (YS), ultimate tensile strength, and ductility of the DA-HEA are ∼2.0 GPa, ∼2.2 GPa, and ∼12.3%, respectively. Compared with the solid solution HEA, the YS of the DA-HEA increased by 1,657 MPa, possessing an astonishing increase of ∼440%. The high YS stems from the precipitation strengthening contributed by the L12 nanoprecipitates and the dislocation strengthening contributed by precold deformation. The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助徐徐俊采纳,获得10
1秒前
xw完成签到,获得积分20
3秒前
4秒前
car完成签到 ,获得积分10
4秒前
123完成签到,获得积分20
4秒前
6秒前
6秒前
哈哈2022完成签到,获得积分10
6秒前
amanda发布了新的文献求助10
9秒前
浅浅依云完成签到,获得积分10
9秒前
领导范儿应助LZR采纳,获得10
10秒前
李健应助凡凡采纳,获得10
10秒前
10秒前
123发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
龙成阳完成签到 ,获得积分10
13秒前
笑点低豆芽完成签到,获得积分10
13秒前
13秒前
xw发布了新的文献求助10
14秒前
15秒前
简单刺猬完成签到,获得积分10
15秒前
15秒前
15秒前
Sweet完成签到,获得积分10
17秒前
18秒前
Ffan完成签到 ,获得积分10
19秒前
李珅玥完成签到,获得积分10
19秒前
pluto应助fafafa采纳,获得10
20秒前
20秒前
Sweet发布了新的文献求助10
21秒前
caitSith发布了新的文献求助10
21秒前
易拉罐罐完成签到,获得积分10
22秒前
清晨仪仪完成签到 ,获得积分10
22秒前
万能图书馆应助grass采纳,获得10
23秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
在水一方应助amanda采纳,获得10
27秒前
小鸟芋圆露露完成签到 ,获得积分0
27秒前
自信鞯完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838