YOLO lung CT disease rapid detection classification with fused attention mechanism

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 特征(语言学) 精确性和召回率 目标检测 机制(生物学) 计算机视觉 哲学 语言学 认识论
作者
Q. Su,Zhenbo Qin,Jianhong Mu,浩 力武
标识
DOI:10.1145/3650400.3650632
摘要

Currently, although the use of convolutional neural networks (CNN) for detecting lung infection has improved the detection performance and efficiency, it still has certain shortcomings, low feature utilization for images or difficulty in focusing key features. An effective YOLO algorithm with fused attention mechanism is proposed for lung CT images to detect normal, common pneumonia and COVID-19 images to address the above problems. The YOLO with fused attention mechanism is mainly divided into two parts for model training and experiments: the first step performs lung segmentation of chest CT images and data cleaning of CT images based on physician diagnostic image values; the second step uses the cleaned lung CT images for training and model evaluation of the Yolov5 model with fused attention mechanism (CBAM). We use a series of operations such as binarization, expansion erosion and connected domain segmentation for initial segmentation and filtering of lung images, and incorporate the attention mechanism into the YOLO model, which enables the model to better focus on key features and avoid interference from erroneous data. The results on the COVID-19x dataset show that the YOLO model with the fused attention mechanism detects classification with an accuracy rate of 0.85 and a recall rate of 0.88. In summary, the fused attention mechanism YOLO outperforms the original YOLO model by 6.5% in accuracy and 8.8% in recall, which helps clinicians diagnose lung inflammatory infections in a timely manner type.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baqiuzunzhe发布了新的文献求助10
刚刚
孝顺的觅风完成签到 ,获得积分10
刚刚
1秒前
Cyuan发布了新的文献求助10
1秒前
JRZ完成签到,获得积分10
2秒前
2秒前
不想晚睡完成签到,获得积分10
2秒前
3秒前
Sylvia发布了新的文献求助50
3秒前
Lia_Yee完成签到,获得积分10
3秒前
4秒前
asdfqwer发布了新的文献求助10
4秒前
可爱的稚晴完成签到,获得积分20
4秒前
进击的PhD完成签到,获得积分10
5秒前
6秒前
单纯无声完成签到 ,获得积分10
6秒前
8秒前
西西弗斯完成签到,获得积分10
10秒前
李卓航发布了新的文献求助10
12秒前
领导范儿应助甜野采纳,获得10
12秒前
12秒前
14秒前
16秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
好好应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716