YOLO lung CT disease rapid detection classification with fused attention mechanism

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 特征(语言学) 精确性和召回率 目标检测 机制(生物学) 计算机视觉 哲学 语言学 认识论
作者
Q. Su,Zhenbo Qin,Jianhong Mu,浩 力武
标识
DOI:10.1145/3650400.3650632
摘要

Currently, although the use of convolutional neural networks (CNN) for detecting lung infection has improved the detection performance and efficiency, it still has certain shortcomings, low feature utilization for images or difficulty in focusing key features. An effective YOLO algorithm with fused attention mechanism is proposed for lung CT images to detect normal, common pneumonia and COVID-19 images to address the above problems. The YOLO with fused attention mechanism is mainly divided into two parts for model training and experiments: the first step performs lung segmentation of chest CT images and data cleaning of CT images based on physician diagnostic image values; the second step uses the cleaned lung CT images for training and model evaluation of the Yolov5 model with fused attention mechanism (CBAM). We use a series of operations such as binarization, expansion erosion and connected domain segmentation for initial segmentation and filtering of lung images, and incorporate the attention mechanism into the YOLO model, which enables the model to better focus on key features and avoid interference from erroneous data. The results on the COVID-19x dataset show that the YOLO model with the fused attention mechanism detects classification with an accuracy rate of 0.85 and a recall rate of 0.88. In summary, the fused attention mechanism YOLO outperforms the original YOLO model by 6.5% in accuracy and 8.8% in recall, which helps clinicians diagnose lung inflammatory infections in a timely manner type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助Ashley采纳,获得10
1秒前
啾啾完成签到,获得积分20
2秒前
4秒前
不必要再讨论适合与否完成签到,获得积分10
5秒前
5秒前
YJJ完成签到,获得积分10
5秒前
Jessica发布了新的文献求助10
5秒前
隐形曼青应助tangz采纳,获得10
5秒前
大力猫崽完成签到 ,获得积分10
5秒前
无花果应助隐形静芙采纳,获得10
6秒前
啾啾发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
fzzf发布了新的文献求助10
12秒前
跳跃太清完成签到 ,获得积分10
12秒前
ww发布了新的文献求助10
13秒前
baobaobaozi完成签到,获得积分10
13秒前
蓝桉发布了新的文献求助10
14秒前
CCCCCL完成签到,获得积分10
14秒前
十七完成签到,获得积分10
15秒前
15秒前
xiaohu发布了新的文献求助10
15秒前
rrgogo完成签到,获得积分20
15秒前
mmb完成签到,获得积分10
16秒前
大个应助yanxun采纳,获得10
16秒前
16秒前
自闭的研究生完成签到 ,获得积分10
17秒前
17秒前
大哥大完成签到,获得积分20
19秒前
聪明水之发布了新的文献求助10
19秒前
21秒前
禅花游鱼完成签到,获得积分10
21秒前
diedeline发布了新的文献求助10
22秒前
22秒前
丁座发布了新的文献求助10
23秒前
yanxun发布了新的文献求助10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451