YOLO lung CT disease rapid detection classification with fused attention mechanism

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 特征(语言学) 精确性和召回率 目标检测 机制(生物学) 计算机视觉 哲学 语言学 认识论
作者
Q. Su,Zhenbo Qin,Jianhong Mu,浩 力武
标识
DOI:10.1145/3650400.3650632
摘要

Currently, although the use of convolutional neural networks (CNN) for detecting lung infection has improved the detection performance and efficiency, it still has certain shortcomings, low feature utilization for images or difficulty in focusing key features. An effective YOLO algorithm with fused attention mechanism is proposed for lung CT images to detect normal, common pneumonia and COVID-19 images to address the above problems. The YOLO with fused attention mechanism is mainly divided into two parts for model training and experiments: the first step performs lung segmentation of chest CT images and data cleaning of CT images based on physician diagnostic image values; the second step uses the cleaned lung CT images for training and model evaluation of the Yolov5 model with fused attention mechanism (CBAM). We use a series of operations such as binarization, expansion erosion and connected domain segmentation for initial segmentation and filtering of lung images, and incorporate the attention mechanism into the YOLO model, which enables the model to better focus on key features and avoid interference from erroneous data. The results on the COVID-19x dataset show that the YOLO model with the fused attention mechanism detects classification with an accuracy rate of 0.85 and a recall rate of 0.88. In summary, the fused attention mechanism YOLO outperforms the original YOLO model by 6.5% in accuracy and 8.8% in recall, which helps clinicians diagnose lung inflammatory infections in a timely manner type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dasha完成签到,获得积分10
刚刚
爱科研的罗罗完成签到,获得积分10
3秒前
sw完成签到,获得积分10
3秒前
壮观听芹完成签到,获得积分10
5秒前
最初的梦想完成签到,获得积分10
6秒前
6秒前
7秒前
重要迎蕾完成签到,获得积分10
8秒前
科研通AI6应助大熊采纳,获得10
8秒前
11秒前
木木发布了新的文献求助10
11秒前
一区劳大完成签到 ,获得积分10
13秒前
13秒前
15秒前
神秘玩家完成签到 ,获得积分10
16秒前
二红红完成签到,获得积分20
17秒前
后笑晴发布了新的文献求助10
18秒前
18秒前
火星完成签到 ,获得积分10
18秒前
19秒前
19秒前
lili完成签到,获得积分10
20秒前
姚银娟发布了新的文献求助10
21秒前
天天快乐应助可靠之玉采纳,获得10
21秒前
Lyh发布了新的文献求助10
24秒前
哈哈哈完成签到 ,获得积分10
24秒前
领导范儿应助sssss采纳,获得20
24秒前
雪白的听寒完成签到 ,获得积分10
26秒前
晨晓完成签到,获得积分10
26秒前
淡然语芙完成签到,获得积分20
27秒前
28秒前
感动芷珊完成签到 ,获得积分10
29秒前
Unicorn完成签到,获得积分10
29秒前
29秒前
jenningseastera应助淡然语芙采纳,获得10
31秒前
bob完成签到,获得积分10
31秒前
31秒前
32秒前
粥里完成签到,获得积分10
32秒前
34秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144735
求助须知:如何正确求助?哪些是违规求助? 4342358
关于积分的说明 13522906
捐赠科研通 4182985
什么是DOI,文献DOI怎么找? 2293779
邀请新用户注册赠送积分活动 1294299
关于科研通互助平台的介绍 1237092