YOLO lung CT disease rapid detection classification with fused attention mechanism

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 特征(语言学) 精确性和召回率 目标检测 机制(生物学) 计算机视觉 哲学 语言学 认识论
作者
Q. Su,Zhenbo Qin,Jianhong Mu,浩 力武
标识
DOI:10.1145/3650400.3650632
摘要

Currently, although the use of convolutional neural networks (CNN) for detecting lung infection has improved the detection performance and efficiency, it still has certain shortcomings, low feature utilization for images or difficulty in focusing key features. An effective YOLO algorithm with fused attention mechanism is proposed for lung CT images to detect normal, common pneumonia and COVID-19 images to address the above problems. The YOLO with fused attention mechanism is mainly divided into two parts for model training and experiments: the first step performs lung segmentation of chest CT images and data cleaning of CT images based on physician diagnostic image values; the second step uses the cleaned lung CT images for training and model evaluation of the Yolov5 model with fused attention mechanism (CBAM). We use a series of operations such as binarization, expansion erosion and connected domain segmentation for initial segmentation and filtering of lung images, and incorporate the attention mechanism into the YOLO model, which enables the model to better focus on key features and avoid interference from erroneous data. The results on the COVID-19x dataset show that the YOLO model with the fused attention mechanism detects classification with an accuracy rate of 0.85 and a recall rate of 0.88. In summary, the fused attention mechanism YOLO outperforms the original YOLO model by 6.5% in accuracy and 8.8% in recall, which helps clinicians diagnose lung inflammatory infections in a timely manner type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sasa完成签到,获得积分10
1秒前
ling_lz发布了新的文献求助10
1秒前
傅凌兰发布了新的文献求助10
3秒前
赘婿应助caicai采纳,获得10
4秒前
科目三应助心碎莫扎特采纳,获得10
6秒前
那时花开发布了新的文献求助10
6秒前
栗子完成签到,获得积分10
7秒前
唠叨的乌发布了新的文献求助20
8秒前
QWER发布了新的文献求助10
8秒前
Drtaoao完成签到 ,获得积分10
10秒前
李健应助少年的回忆采纳,获得10
10秒前
10秒前
12秒前
GT发布了新的文献求助10
12秒前
XIXIXI发布了新的文献求助10
13秒前
小青椒应助酷酷的耷采纳,获得30
17秒前
anlikek发布了新的文献求助10
17秒前
19秒前
从善驳回了Hello应助
19秒前
vivien完成签到,获得积分10
22秒前
22秒前
22秒前
逐影完成签到,获得积分20
23秒前
精明世倌完成签到 ,获得积分10
24秒前
淡定的初夏应助wjp采纳,获得10
25秒前
25秒前
yalin完成签到,获得积分10
26秒前
27秒前
27秒前
32秒前
juan发布了新的文献求助10
33秒前
34秒前
34秒前
菜鸟队长发布了新的文献求助10
35秒前
XIXIXI完成签到 ,获得积分10
36秒前
37秒前
短巷发布了新的文献求助10
37秒前
38秒前
Criminology34应助端庄从凝采纳,获得10
40秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384107
求助须知:如何正确求助?哪些是违规求助? 4507070
关于积分的说明 14026579
捐赠科研通 4416653
什么是DOI,文献DOI怎么找? 2426089
邀请新用户注册赠送积分活动 1418888
关于科研通互助平台的介绍 1397100