YOLO lung CT disease rapid detection classification with fused attention mechanism

计算机科学 人工智能 卷积神经网络 分割 模式识别(心理学) 特征(语言学) 精确性和召回率 目标检测 机制(生物学) 计算机视觉 语言学 认识论 哲学
作者
Q. Su,Zhenbo Qin,Jianhong Mu,浩 力武
标识
DOI:10.1145/3650400.3650632
摘要

Currently, although the use of convolutional neural networks (CNN) for detecting lung infection has improved the detection performance and efficiency, it still has certain shortcomings, low feature utilization for images or difficulty in focusing key features. An effective YOLO algorithm with fused attention mechanism is proposed for lung CT images to detect normal, common pneumonia and COVID-19 images to address the above problems. The YOLO with fused attention mechanism is mainly divided into two parts for model training and experiments: the first step performs lung segmentation of chest CT images and data cleaning of CT images based on physician diagnostic image values; the second step uses the cleaned lung CT images for training and model evaluation of the Yolov5 model with fused attention mechanism (CBAM). We use a series of operations such as binarization, expansion erosion and connected domain segmentation for initial segmentation and filtering of lung images, and incorporate the attention mechanism into the YOLO model, which enables the model to better focus on key features and avoid interference from erroneous data. The results on the COVID-19x dataset show that the YOLO model with the fused attention mechanism detects classification with an accuracy rate of 0.85 and a recall rate of 0.88. In summary, the fused attention mechanism YOLO outperforms the original YOLO model by 6.5% in accuracy and 8.8% in recall, which helps clinicians diagnose lung inflammatory infections in a timely manner type.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诺贝尔候选人完成签到 ,获得积分10
1秒前
1秒前
2秒前
喵喵发布了新的文献求助10
3秒前
完美世界应助发发采纳,获得10
3秒前
星辰大海应助huhuodan采纳,获得10
4秒前
hr520824应助白一陈采纳,获得10
4秒前
淡淡的白羊完成签到 ,获得积分10
5秒前
Ryki发布了新的文献求助10
5秒前
Cheems发布了新的文献求助10
6秒前
DawudShan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
乐观的思卉完成签到,获得积分10
8秒前
cc完成签到 ,获得积分10
8秒前
科研通AI2S应助闪亮的皮蛋采纳,获得10
9秒前
9秒前
小昊发布了新的文献求助10
9秒前
不二家的卡农完成签到,获得积分10
10秒前
11秒前
英俊的铭应助YutingLiu采纳,获得10
11秒前
llllliu完成签到,获得积分10
11秒前
闪闪绮山关注了科研通微信公众号
12秒前
13秒前
SciGPT应助不想看文献采纳,获得10
13秒前
DawudShan完成签到,获得积分10
13秒前
科研通AI2S应助cxt采纳,获得10
13秒前
13秒前
13秒前
enen发布了新的文献求助10
16秒前
16秒前
16秒前
zxe完成签到,获得积分10
19秒前
爱笑的汽车发布了新的文献求助200
19秒前
20秒前
20秒前
Nickname发布了新的文献求助200
21秒前
ann发布了新的文献求助10
21秒前
CipherSage应助MU采纳,获得50
21秒前
Yuan完成签到,获得积分10
23秒前
hx666发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477