The effect of relational embeddedness on transparency in supply chain networks: the moderating role of digitalization

嵌入性 透明度(行为) 业务 供应链 产业组织 运营管理 供应链管理 过程管理 营销 计算机科学 经济 社会学 计算机安全 人类学
作者
Bo Feng,Manfei Zheng,Yi Shen
出处
期刊:International Journal of Operations & Production Management [Emerald (MCB UP)]
卷期号:44 (9): 1621-1648 被引量:9
标识
DOI:10.1108/ijopm-08-2023-0713
摘要

Purpose An emerging body of literature has pinpointed the role of supply chain structure in influencing the extent to which supply chain members disclose information about their internal practices and performance. Nevertheless, empirical research investigating the effects of firm-level relational embeddedness on network-level transparency still lags. Drawing on social network analysis, this research examines the effect of relational embeddedness on supply chain transparency and the contingent role of digitalization in the context of environmental, social and governance (ESG) information disclosure. Design/methodology/approach In their empirical analysis, the authors collected secondary data from the Bloomberg database about 2,229 firms and 14,007 ties organized in 107 extended supply chains. The authors employed supplier and customer concentration metrics to measure relational embeddedness and performed multiple econometric models to test the hypothesis. Findings The authors found a positive effect of supplier concentration on supply chain transparency, but the effect of customer concentration was not significant. Additionally, the digitalization of focal firms reinforced the impact of supplier concentration on supply chain transparency. Originality/value The study findings contribute by underscoring the critical effect of relational embeddedness on supply chain transparency, extending prior literature on social network analysis, providing compelling evidence for the intersection of digitalization and supply chain management, and drawing important implications for practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YE完成签到,获得积分10
刚刚
2鱼完成签到,获得积分10
刚刚
FooLeup立仔完成签到,获得积分10
刚刚
1秒前
顾矜应助JUll采纳,获得10
1秒前
Amai发布了新的文献求助20
1秒前
小马甲应助Lucas采纳,获得10
1秒前
2秒前
zZ发布了新的文献求助10
2秒前
qi完成签到,获得积分10
3秒前
标致缘郡发布了新的文献求助10
3秒前
miawei完成签到,获得积分10
4秒前
4秒前
wangfu发布了新的文献求助10
4秒前
明理依云完成签到,获得积分10
4秒前
4秒前
5秒前
二世小卒完成签到 ,获得积分10
5秒前
和谐乌龟完成签到,获得积分10
6秒前
阳尧完成签到,获得积分10
6秒前
帅气惜霜发布了新的文献求助10
6秒前
6秒前
kkkklo发布了新的文献求助30
8秒前
传奇3应助润润轩轩采纳,获得10
8秒前
8秒前
10秒前
和谐乌龟发布了新的文献求助10
10秒前
zZ完成签到,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
LYY发布了新的文献求助10
11秒前
wangfu完成签到,获得积分10
11秒前
ding应助Dddd采纳,获得10
12秒前
yin发布了新的文献求助10
12秒前
大模型应助张张采纳,获得10
12秒前
Akim应助吾问无为谓采纳,获得10
13秒前
13秒前
神勇的冰姬完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794