Potential of Large Language Models in Health Care: Delphi Study

医疗保健 健康信息学 优势和劣势 背景(考古学) 文档 德尔菲法 心理学 医学教育 人工智能 计算机科学 医学 护理部 公共卫生 社会心理学 政治学 法学 程序设计语言 古生物学 生物
作者
Kerstin Denecke,Richard May,Octavio Rivera-Romero
出处
期刊:Journal of Medical Internet Research 卷期号:26: e52399-e52399 被引量:7
标识
DOI:10.2196/52399
摘要

Background A large language model (LLM) is a machine learning model inferred from text data that captures subtle patterns of language use in context. Modern LLMs are based on neural network architectures that incorporate transformer methods. They allow the model to relate words together through attention to multiple words in a text sequence. LLMs have been shown to be highly effective for a range of tasks in natural language processing (NLP), including classification and information extraction tasks and generative applications. Objective The aim of this adapted Delphi study was to collect researchers’ opinions on how LLMs might influence health care and on the strengths, weaknesses, opportunities, and threats of LLM use in health care. Methods We invited researchers in the fields of health informatics, nursing informatics, and medical NLP to share their opinions on LLM use in health care. We started the first round with open questions based on our strengths, weaknesses, opportunities, and threats framework. In the second and third round, the participants scored these items. Results The first, second, and third rounds had 28, 23, and 21 participants, respectively. Almost all participants (26/28, 93% in round 1 and 20/21, 95% in round 3) were affiliated with academic institutions. Agreement was reached on 103 items related to use cases, benefits, risks, reliability, adoption aspects, and the future of LLMs in health care. Participants offered several use cases, including supporting clinical tasks, documentation tasks, and medical research and education, and agreed that LLM-based systems will act as health assistants for patient education. The agreed-upon benefits included increased efficiency in data handling and extraction, improved automation of processes, improved quality of health care services and overall health outcomes, provision of personalized care, accelerated diagnosis and treatment processes, and improved interaction between patients and health care professionals. In total, 5 risks to health care in general were identified: cybersecurity breaches, the potential for patient misinformation, ethical concerns, the likelihood of biased decision-making, and the risk associated with inaccurate communication. Overconfidence in LLM-based systems was recognized as a risk to the medical profession. The 6 agreed-upon privacy risks included the use of unregulated cloud services that compromise data security, exposure of sensitive patient data, breaches of confidentiality, fraudulent use of information, vulnerabilities in data storage and communication, and inappropriate access or use of patient data. Conclusions Future research related to LLMs should not only focus on testing their possibilities for NLP-related tasks but also consider the workflows the models could contribute to and the requirements regarding quality, integration, and regulations needed for successful implementation in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴素山兰完成签到,获得积分10
刚刚
不配.应助传统的鹏涛采纳,获得10
1秒前
阿邪发布了新的文献求助10
1秒前
知行合一发布了新的文献求助10
1秒前
巴斯光年发布了新的文献求助10
1秒前
3秒前
superluckc完成签到,获得积分20
3秒前
3秒前
试验顺利应助ZZDXXX采纳,获得10
4秒前
Lucas应助guulee采纳,获得10
5秒前
健壮的雅琴完成签到 ,获得积分10
5秒前
Ayanami发布了新的文献求助10
6秒前
妖怪大大发布了新的文献求助10
6秒前
清风悠笛完成签到,获得积分10
6秒前
小陈发布了新的文献求助10
7秒前
张晟晟发布了新的文献求助30
7秒前
8秒前
不落黄昏完成签到,获得积分10
8秒前
Ayanami完成签到,获得积分10
11秒前
meimei完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
凹凸先森应助雨的前世采纳,获得10
15秒前
15秒前
烟花应助yunnguw采纳,获得10
16秒前
张晟晟完成签到,获得积分10
16秒前
18秒前
Jasper应助柒柒采纳,获得10
19秒前
英姑应助杏子采纳,获得30
20秒前
22秒前
姜姜发布了新的文献求助10
22秒前
dyh发布了新的文献求助10
24秒前
huangllza发布了新的文献求助10
26秒前
活力白亦完成签到 ,获得积分10
26秒前
28秒前
Lucas应助dyh采纳,获得10
29秒前
杏子完成签到,获得积分10
30秒前
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329635
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594779
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443715
科研通“疑难数据库(出版商)”最低求助积分说明 668827
邀请新用户注册赠送积分活动 656261