Fusion of hierarchical class graphs for remote sensing semantic segmentation

计算机科学 分割 班级(哲学) 模式识别(心理学) 不相交集 尺度空间分割 图形 图像分割 人工智能 像素 基于分割的对象分类 关系(数据库) 分层数据库模型 数据挖掘 数学 理论计算机科学 组合数学
作者
Xudong Kang,Yintao Hong,Puhong Duan,Shutao Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102409-102409 被引量:11
标识
DOI:10.1016/j.inffus.2024.102409
摘要

Semantic segmentation of remote sensing images aims to assign a specific label or class to each pixel in an image, which plays an extremely important role in scene understanding. Currently, many advanced deep learning-based semantic segmentation methods have been developed. However, these methods are always based on disjoint labels to identify ground objects while ignoring the correlation (e.g., semantic, shapes, materials, etc.) among different ground objects, which limits the segmentation performance of remote sensing images. To solve this issue, we propose a hierarchical class graph for semantic segmentation of high resolution remote sensing images, which can learn structured relation among different ground objects. Specifically, first, we construct hierarchical class graphs based on different attributes and layers. Then, a three-layer hierarchical segmentation framework is developed to learn the correlation among different ground objects. Finally, a decision fusion method is designed to fuse the benefits of different hierarchical attributes and layers. More importantly, the influence of different hierarchical class graphs on the segmentation performance is detailedly analyzed. Extensive experiments on the iSAID and Vaihingen datasets reveal that all studied segmentation methods with hierarchical class graph can obtain better segmentation performance compared to ones without hierarchical class graph. The limitation of the proposed method is that the training time of the segmentation model tends to increase a bit because of considering the correlation among different ground objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy发布了新的文献求助10
3秒前
范小楠完成签到,获得积分10
4秒前
温婉的书蕾完成签到 ,获得积分10
5秒前
乐乐应助机智念芹采纳,获得10
7秒前
JamesPei应助张凯采纳,获得10
7秒前
孙燕应助李y梅子采纳,获得50
8秒前
细心书蕾完成签到 ,获得积分10
9秒前
范医生01完成签到,获得积分10
9秒前
11秒前
11秒前
Theprisoners应助yu采纳,获得20
14秒前
JamesPei应助天边采纳,获得10
15秒前
深情安青应助xy采纳,获得10
16秒前
17秒前
18秒前
19秒前
英俊的铭应助无私秋珊采纳,获得10
20秒前
Ace发布了新的文献求助10
20秒前
yang完成签到,获得积分10
21秒前
张凯发布了新的文献求助10
21秒前
23秒前
apoptoxin4896发布了新的文献求助10
23秒前
斯文败类应助zhourongchun采纳,获得10
24秒前
25秒前
zhaoyuqing完成签到 ,获得积分10
26秒前
Csene发布了新的文献求助10
27秒前
打打应助科研通管家采纳,获得10
27秒前
Profeto应助科研通管家采纳,获得10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
ED应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得30
28秒前
dongjy应助科研通管家采纳,获得40
28秒前
大模型应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
NexusExplorer应助香山叶正红采纳,获得10
30秒前
蜜HHH完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712