A Multiscale Grouping Transformer With CLIP Latents for Remote Sensing Image Captioning

隐藏字幕 计算机科学 遥感 变压器 计算机视觉 人工智能 图像(数学) 计算机图形学(图像) 地质学 工程类 电气工程 电压
作者
Lingwu Meng,Jing Wang,Ran Meng,Yang Yang,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2024.3385500
摘要

Recent progress has shown that integrating multiscale visual features with advanced Transformer architectures is a promising approach for remote sensing image captioning (RSIC). However, the lack of local modeling ability in self-attention may potentially lead to inaccurate contextual information. Moreover, the scarcity of trainable image-caption pairs poses challenges in effectively harnessing the semantic alignment between images and texts. To mitigate these issues, we propose a Multiscale Grouping Transformer with Contrastive Language-Image Pre-training (CLIP) latents (MG-Transformer) for RSIC. First of all, a CLIP image embedding and a set of region features are extracted within a Multi-level Feature Extraction module. To achieve a comprehensive image representation, a Semantic Correlation module is designed to integrate the image embedding and region features with an attention gate. Subsequently, the integrated image features are fed into a Transformer model. The Transformer encoder utilizes dilated convolutions with different dilation rates to obtain multiscale visual features. To enhance the local modeling ability of the self-attention mechanism in the encoder, we introduce a Global Grouping Attention mechanism. This mechanism incorporates a grouping operation into self-attention, allowing each attention head to focus on different contextual information. The Transformer decoder then adopts the Meshed Cross-Attention mechanism to establish relationships between various scales of visual features and text features. This facilitates the generation of captions for images by the decoder. Experimental results on three RSIC datasets demonstrate the superiority of the proposed MG-Transformer. The code will be publicly available at https://github.com/One-paper-luck/MG-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
1秒前
时倾完成签到,获得积分10
1秒前
清脆冬日完成签到 ,获得积分10
1秒前
2秒前
善学以致用应助Mipaa采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
积极松完成签到 ,获得积分10
5秒前
一又二分之一完成签到,获得积分10
6秒前
xieyangyu完成签到 ,获得积分10
6秒前
ARESCI发布了新的文献求助10
7秒前
lyp发布了新的文献求助10
8秒前
淡淡尔烟发布了新的文献求助10
10秒前
Gloyxtg发布了新的文献求助10
10秒前
思源应助王月帆采纳,获得10
11秒前
99668完成签到,获得积分10
12秒前
小马甲应助周美言采纳,获得10
12秒前
可爱的函函应助以鹿之路采纳,获得10
12秒前
Roxanne发布了新的文献求助20
12秒前
12秒前
Jasper应助星星采纳,获得10
13秒前
13秒前
kikeva发布了新的文献求助10
16秒前
情怀应助彩彩采纳,获得10
17秒前
大模型应助Heyley采纳,获得10
17秒前
科研通AI6应助hh采纳,获得10
17秒前
研友_VZG7GZ应助叶涛采纳,获得10
18秒前
海棠发布了新的文献求助10
19秒前
云上完成签到,获得积分10
20秒前
21秒前
曦cherish完成签到,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
啊哦发布了新的文献求助10
26秒前
娇气的冬菱完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950