A Multiscale Grouping Transformer With CLIP Latents for Remote Sensing Image Captioning

隐藏字幕 计算机科学 遥感 变压器 计算机视觉 人工智能 图像(数学) 计算机图形学(图像) 地质学 工程类 电气工程 电压
作者
Lingwu Meng,Jing Wang,Ran Meng,Yang Yang,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2024.3385500
摘要

Recent progress has shown that integrating multiscale visual features with advanced Transformer architectures is a promising approach for remote sensing image captioning (RSIC). However, the lack of local modeling ability in self-attention may potentially lead to inaccurate contextual information. Moreover, the scarcity of trainable image-caption pairs poses challenges in effectively harnessing the semantic alignment between images and texts. To mitigate these issues, we propose a Multiscale Grouping Transformer with Contrastive Language-Image Pre-training (CLIP) latents (MG-Transformer) for RSIC. First of all, a CLIP image embedding and a set of region features are extracted within a Multi-level Feature Extraction module. To achieve a comprehensive image representation, a Semantic Correlation module is designed to integrate the image embedding and region features with an attention gate. Subsequently, the integrated image features are fed into a Transformer model. The Transformer encoder utilizes dilated convolutions with different dilation rates to obtain multiscale visual features. To enhance the local modeling ability of the self-attention mechanism in the encoder, we introduce a Global Grouping Attention mechanism. This mechanism incorporates a grouping operation into self-attention, allowing each attention head to focus on different contextual information. The Transformer decoder then adopts the Meshed Cross-Attention mechanism to establish relationships between various scales of visual features and text features. This facilitates the generation of captions for images by the decoder. Experimental results on three RSIC datasets demonstrate the superiority of the proposed MG-Transformer. The code will be publicly available at https://github.com/One-paper-luck/MG-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助圈圈采纳,获得10
刚刚
1秒前
wangpl1607发布了新的文献求助10
2秒前
科研通AI2S应助cbz采纳,获得10
2秒前
bkagyin应助好滴捏采纳,获得10
2秒前
鑫渊完成签到,获得积分10
3秒前
3秒前
木穹完成签到,获得积分0
3秒前
爆米花应助羊木采纳,获得10
4秒前
5秒前
852应助端庄大米采纳,获得10
6秒前
njxray完成签到 ,获得积分10
6秒前
7秒前
gs发布了新的文献求助10
7秒前
莫筱铭发布了新的文献求助10
7秒前
熊本熊完成签到,获得积分10
7秒前
陈星完成签到,获得积分10
7秒前
现代的雅彤完成签到 ,获得积分10
7秒前
姚盈盈发布了新的文献求助10
8秒前
8秒前
SciGPT应助嘉嘉sone采纳,获得10
9秒前
风中凌旋应助内向灵凡采纳,获得10
10秒前
10秒前
11秒前
12秒前
认真浩宇发布了新的文献求助30
12秒前
12秒前
思源应助热情的板栗采纳,获得10
12秒前
13秒前
123发布了新的文献求助10
14秒前
羊木完成签到,获得积分10
15秒前
所所应助可耐的手机采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
橙橙妈妈发布了新的文献求助10
16秒前
coco发布了新的文献求助10
17秒前
羊木发布了新的文献求助10
17秒前
nfmhh发布了新的文献求助20
19秒前
野原发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578523
求助须知:如何正确求助?哪些是违规求助? 4663413
关于积分的说明 14746147
捐赠科研通 4604178
什么是DOI,文献DOI怎么找? 2526874
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465787