亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Plant Size and Weight Estimation of Tomato Fruits Using Deep Neural Networks and RGB-D Imaging

RGB颜色模型 估计 人工智能 人工神经网络 深层神经网络 园艺 计算机科学 模式识别(心理学) 生物 工程类 系统工程
作者
Suk-Ju Hong,Sungjay Kim,ChangHyup Lee,Seong-Min Park,Kyoung-Chul Kim,Ahyeong Lee,Ghiseok Kim
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:67 (2): 439-450 被引量:1
标识
DOI:10.13031/ja.15746
摘要

Highlights Deep learning-based instance segmentation models were applied and evaluated for tomato fruit detection. Mask R-CNN with vision transformer backbone showed the highest accuracy for tomato instance detection. Size and weight estimation indexes were calculated using tomato region depth data from instance segmentation models. Area-based index has higher accuracy for weight estimation than indexes based on weight and height information. Abstract. The size and weight of fruits are crucial factors in yield prediction and determining harvesting time. Machine vision, including fruit detection, is a key technology in the automated monitoring and harvesting of fruits. In particular, deep learning-based fruit-detection methods have been actively applied. Estimation of fruit size after fruit detection requires depth information, which can be acquired using depth imaging. RGB-D cameras include color and depth information required for fruit detection and size estimation. In this study, the RGB-D imaging technique was used to estimate the size and weight of tomatoes. Furthermore, deep learning-based instance segmentation models, including Mask R-CNN, YOLACT, and RTMDet for tomato fruit detection, were trained and evaluated. The proposed method estimated the fruit width with a root mean square error (RMSE) of 4 mm, a mean absolute percentage error (MAPE) of 4.28%, and a fruit height with an RMSE of 5.12 mm and a MAPE of 6.42%. Furthermore, the weight-prediction model based on the area index estimated the tomato fruit weight with an RMSE of 19.69 g and MAPE of 9.44%. Thus, the method can be used for accurate size and weight estimation and can be applied in growth monitoring and automated tomatoes harvesting. Keywords: Deep learning, Fruit sizing, Instance segmentation, RGB-D, Tomato.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
13秒前
20秒前
爆米花应助zhaoty采纳,获得10
25秒前
Shengee发布了新的文献求助10
26秒前
深情安青应助punch采纳,获得10
34秒前
LP发布了新的文献求助10
39秒前
39秒前
punch发布了新的文献求助10
45秒前
50秒前
852应助狂野晓蕾采纳,获得10
55秒前
Kevin完成签到,获得积分10
55秒前
zhaoty发布了新的文献求助10
56秒前
狮子沟核聚变骡子完成签到 ,获得积分10
59秒前
科目三应助punch采纳,获得10
59秒前
59秒前
1分钟前
爆米花应助Drwang采纳,获得10
1分钟前
1分钟前
1分钟前
bkagyin应助平淡小兔子采纳,获得10
1分钟前
狂野晓蕾发布了新的文献求助10
1分钟前
NatureLee完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助狂野晓蕾采纳,获得10
1分钟前
1分钟前
zhaoty完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得40
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
嘉心糖应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948687
关于积分的说明 8541773
捐赠科研通 2624574
什么是DOI,文献DOI怎么找? 1436326
科研通“疑难数据库(出版商)”最低求助积分说明 665862
邀请新用户注册赠送积分活动 651796