亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepMedSegment A Deep Learning Approach for Medical Image Segmentation

计算机科学 分割 人工智能 图像(数学) 深度学习 情报检索 数据科学
作者
ATHULURI THARUNI,M N Nachappa
出处
期刊:International Journal of Innovative Research in Computer and Communication Engineering [Ess and Ess Research Publications]
卷期号:12 (03)
标识
DOI:10.15680/ijircce.2024.1203072
摘要

Deep Med Segment introduces an innovative approach to medical image segmentation, utilizing deeplearning techniques. Its goal is to precisely identify regions of interest within medical images, which is crucial forclinical diagnosis and treatment planning. Unlike traditional methods that rely on manual feature engineering, DeepMed Segment learns directly from data, enhancing accuracy and adaptability. Deep Med Segment employs deepconvolutional neural networks (CNNs), tailored for the complexities of medical images. It can handle variousmodalities like MRI, CT, X-ray, and ultrasound, making it versatile across medical specialties. Training requiresannotated datasets, enabling the model to map images to segmentation masks through supervised learning. To ensurerobustness, Deep Med Segment utilizes data augmentation techniques during training, enhancing its ability togeneralize across different imaging conditions. Evaluation on diverse datasets demonstrates superior performancecompared to traditional methods, with metrics like Dice similarity coefficient used for accuracy assessment. Inexperiments, Deep Med Segment consistently outperforms existing techniques, promising significant advancements inmedical imaging analysis. Its accuracy, efficiency, and adaptability make it a valuable tool for clinical diagnosis andresearch, with potential to improve patient care and healthcare outcomes. In the realm of medical image analysis,DeepMedSegment emerges as a pioneering approach harnessing the power of deep learning for image segmentation.Segmentation of medical images plays a pivotal role in clinical diagnosis, treatment planning, and monitoring ofvarious diseases. DeepMedSegment aims to tackle this challenge by leveraging advanced deep learning techniques toaccurately delineate regions of interest within medical images.One of the key strengths of DeepMedSegment lies in its ability to adapt and generalize across different modalities andimaging techniques, including magnetic resonance imaging (MRI), computed tomography (CT), X-ray, ultrasound, andmore. This versatility makes DeepMedSegment a valuable tool for a wide range of medical imaging applications,spanning from neuroimaging and oncology to cardiology and musculoskeletal imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
HJX完成签到,获得积分10
4秒前
第二支羽毛完成签到,获得积分10
4秒前
4秒前
yoyo完成签到 ,获得积分10
5秒前
PAIDAXXXX发布了新的文献求助10
8秒前
8秒前
YUEER发布了新的文献求助10
9秒前
9秒前
amengptsd完成签到,获得积分10
14秒前
CipherSage应助PAIDAXXXX采纳,获得10
16秒前
阳光血茗完成签到,获得积分10
17秒前
十三完成签到,获得积分10
18秒前
28秒前
聪慧鸭子应助最爱吃火锅采纳,获得10
31秒前
pjjpk01完成签到,获得积分10
32秒前
寒霜扬名完成签到 ,获得积分10
33秒前
hansku987完成签到 ,获得积分10
36秒前
隐形曼青应助欣喜面包采纳,获得10
39秒前
FashionBoy应助时空星客采纳,获得10
42秒前
吉祥高趙完成签到 ,获得积分10
48秒前
务实的哈密瓜完成签到,获得积分10
51秒前
54秒前
空空完成签到,获得积分10
57秒前
fcc完成签到 ,获得积分10
59秒前
1分钟前
Adc应助大力的图图采纳,获得10
1分钟前
皮代谷发布了新的文献求助10
1分钟前
时空星客发布了新的文献求助10
1分钟前
1分钟前
1分钟前
我要看文献完成签到 ,获得积分10
1分钟前
乐乐乐乐乐乐完成签到 ,获得积分10
1分钟前
1分钟前
威武的凌旋完成签到,获得积分20
1分钟前
1分钟前
欣喜面包发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Marciu33完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870572
求助须知:如何正确求助?哪些是违规求助? 6463600
关于积分的说明 15664361
捐赠科研通 4986645
什么是DOI,文献DOI怎么找? 2688918
邀请新用户注册赠送积分活动 1631295
关于科研通互助平台的介绍 1589348