Fast Metric Embedding into the Hamming Cube

嵌入 公制(单位) 立方体(代数) 汉明距离 计算机科学 组合数学 数学 理论计算机科学 算法 人工智能 工程类 运营管理
作者
Sjoerd Dirksen,Shahar Mendelson,Alexander Stollenwerk
出处
期刊:SIAM Journal on Computing [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 315-345
标识
DOI:10.1137/22m1520220
摘要

.We consider the problem of embedding a subset of \(\mathbb{R}^n\) into a low-dimensional Hamming cube in an almost isometric way. We construct a simple, data-oblivious, and computationally efficient map that achieves this task with high probability; we first apply a specific structured random matrix, which we call the double circulant matrix; using that a matrix requires linear storage and matrix-vector multiplication that can be performed in near-linear time. We then binarize each vector by comparing each of its entries to a random threshold, selected uniformly at random from a well-chosen interval. We estimate the number of bits required for this encoding scheme in terms of two natural geometric complexity parameters of the set: its Euclidean covering numbers and its localized Gaussian complexity. The estimate we derive turns out to be the best that one can hope for, up to logarithmic terms. The key to the proof is a phenomenon of independent interest: we show that the double circulant matrix mimics the behavior of the Gaussian matrix in two important ways. First, it maps an arbitrary set in \(\mathbb{R}^n\) into a set of well-spread vectors. Second, it yields a fast near-isometric embedding of any finite subset of \(\ell_2^n\) into \(\ell_1^m\). This embedding achieves the same dimension reduction as the Gaussian matrix in near-linear time, under an optimal condition—up to logarithmic factors—on the number of points to be embedded. This improves a well-known construction due to Ailon and Chazelle.Keywordsdimension reductionJohnson–Lindenstrauss embeddingsHamming cubecirculant matricesGaussian widthMSC codes68R1260B20
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星小小发布了新的文献求助10
刚刚
WenHe发布了新的文献求助10
刚刚
1秒前
Liuzihao完成签到 ,获得积分10
2秒前
2秒前
3秒前
EasonChan发布了新的文献求助10
4秒前
jinx123456完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
怕孤单的幻枫完成签到,获得积分10
7秒前
陈乔乔完成签到,获得积分10
7秒前
zyqi发布了新的文献求助10
7秒前
纯真的鸿涛完成签到,获得积分10
7秒前
搜集达人应助高兴的平露采纳,获得10
8秒前
高高发布了新的文献求助10
8秒前
SYLH应助高兴123采纳,获得30
10秒前
wanci应助线条小狗采纳,获得10
10秒前
10秒前
schilling发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
小马甲应助benj采纳,获得30
14秒前
高高完成签到,获得积分10
14秒前
李一帆发布了新的文献求助10
15秒前
dew完成签到,获得积分10
15秒前
昵称发布了新的文献求助10
16秒前
16秒前
仲夏夜之梦完成签到,获得积分10
17秒前
albertxin完成签到,获得积分10
17秒前
17秒前
脑洞疼应助听雨z采纳,获得10
18秒前
ding应助EasonChan采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
大个应助沉静亿先采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350