ProMvSD: Towards unsupervised knowledge graph anomaly detection via prior knowledge integration and multi-view semantic-driven estimation

计算机科学 异常检测 图形 知识图 估计 人工智能 情报检索 数据挖掘 机器学习 理论计算机科学 经济 管理
作者
Yunfeng Zhou,Cui Zhu,Wenjun Zhu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (4): 103705-103705 被引量:3
标识
DOI:10.1016/j.ipm.2024.103705
摘要

Knowledge graphs (KGs) have found extensive applications within intelligent systems, such as information retrieval. Much of the research has predominantly focused on completing missing knowledge, with little consideration given to examining errors. Unfortunately, during customizing KGs, diverse unpredictable errors are virtually unavoidable to be introduced, and these anomalies significantly impact the performance of applications. Detecting erroneous knowledge presents a formidable challenge due to the costly acquisition of ground-truth labels. In this work, we develop an unsupervised anomaly detection framework named ProMvSD, aiming to adapt KGs of varying scales via serialization components. To overcome the insufficient contextual information provided by the topological structure, we introduce the large language model as a reasoner to extract prior knowledge from extensive pre-trained textual data, thereby enhancing the understanding of KGs. Anomalous triple may result in a larger semantic gap between the head and tail neighborhoods. To uncover latent anomalies effectively, we propose a multi-view semantic-driven model (MvSD) based on the assumptions of self-consistency and information stability. MvSD jointly estimates the suspiciousness of triples from three hyperviews: node-view semantic contradiction, triple-view semantic gap, and pathway-view semantic gap. Extensive experiments on three English benchmark KGs and a Chinese medical KG demonstrate that, for the top 1% of the most suspicious triples, we can detect real anomalies with at most 99.9% accuracy. Furthermore, ProMvSD significantly outperforms state-of-the-art representation learning baselines, achieving a 29.2% improvement in detecting all anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的乌完成签到,获得积分10
刚刚
巴图鲁完成签到,获得积分10
1秒前
李爱国应助天真书南采纳,获得10
1秒前
Peggy发布了新的文献求助30
2秒前
hahaha完成签到,获得积分10
2秒前
2秒前
爱笑音响发布了新的文献求助10
4秒前
庞伟泽发布了新的文献求助10
4秒前
4秒前
大个应助高挑的小蕊采纳,获得10
5秒前
6秒前
海里木完成签到,获得积分10
6秒前
12366666完成签到,获得积分10
6秒前
Mm完成签到,获得积分10
7秒前
mia发布了新的文献求助10
7秒前
8秒前
8秒前
苏翰英完成签到,获得积分20
8秒前
killler完成签到,获得积分10
9秒前
domingo发布了新的文献求助10
10秒前
俏皮的荔枝完成签到,获得积分10
10秒前
慕青应助楼宸采纳,获得10
10秒前
老实向雁发布了新的文献求助10
11秒前
12366666发布了新的文献求助10
11秒前
11秒前
Famiglistmo完成签到,获得积分10
11秒前
lizz发布了新的文献求助10
12秒前
Hello应助自由的冰蓝采纳,获得10
12秒前
yy完成签到,获得积分10
13秒前
迷失之韵发布了新的文献求助10
13秒前
Kung完成签到 ,获得积分10
13秒前
13秒前
Xu关闭了Xu文献求助
13秒前
dracovu完成签到,获得积分10
13秒前
Diss发布了新的文献求助100
14秒前
14秒前
乐乐应助泉水采纳,获得10
14秒前
14秒前
小马甲应助淡然的大碗采纳,获得10
14秒前
桐桐应助F_ken采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707