Privacy-Preserving and Trusted Keyword Search for Multi-Tenancy Cloud

计算机科学 云计算 多租户技术 关键字搜索 计算机安全 信息隐私 互联网隐私 软件即服务 情报检索 操作系统 软件 软件开发
作者
Xiaojie Zhu,Peisong Shen,Yueyue Dai,Lei Xu,Jiankun Hu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4316-4330 被引量:1
标识
DOI:10.1109/tifs.2024.3377549
摘要

Cloud service models intrinsically cater to multiple tenants. In current multi-tenancy model, cloud service providers isolate data within a single tenant boundary with no or minimum cross-tenant interaction. With the booming of cloud applications, allowing a user to search across tenants is crucial to utilize stored data more effectively. However, conducting such a search operation is inherently risky, primarily due to privacy concerns. Moreover, existing schemes typically focus on a single tenant and are not well suited to extend support to a multi-tenancy cloud, where each tenant operates independently. In this article, to address the above issue, we provide a privacy-preserving, verifiable, accountable, and parallelizable solution for "privacy-preserving keyword search problem" among multiple independent data owners. We consider a scenario in which each tenant is a data owner and a user's goal is to efficiently search for granted documents that contain the target keyword among all the data owners. We first propose a verifiable yet accountable keyword searchable encryption (VAKSE) scheme through symmetric bilinear mapping. For verifiability, a message authentication code (MAC) is computed for each associated piece of data. To maintain a consistent size of MAC, the computed MACs undergo an exclusive OR operation. For accountability, we propose a keyword-based accountable token mechanism where the client's identity is seamlessly embedded without compromising privacy. Furthermore, we introduce the parallel VAKSE scheme, in which the inverted index is partitioned into small segments and all of them can be processed synchronously. We also conduct formal security analysis and comprehensive experiments to demonstrate the data privacy preservation and efficiency of the proposed schemes, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助遇晴采纳,获得10
1秒前
苹果骑士完成签到,获得积分10
1秒前
椰子狗完成签到,获得积分10
2秒前
许一完成签到,获得积分10
2秒前
打打应助李晓凤采纳,获得10
3秒前
sby19发布了新的文献求助30
3秒前
台灯没电了完成签到,获得积分10
3秒前
氯化钡完成签到 ,获得积分10
3秒前
啥也不会完成签到,获得积分10
5秒前
燕子发布了新的文献求助30
5秒前
Ximeng李1128完成签到,获得积分10
6秒前
8秒前
mayisang完成签到,获得积分10
8秒前
8秒前
寒冷的灵完成签到,获得积分10
8秒前
爆米花应助无情的宛儿采纳,获得20
9秒前
不懈奋进应助现代的傻姑采纳,获得30
10秒前
活ni的pig完成签到 ,获得积分10
10秒前
花生仔应助大象放冰箱采纳,获得10
10秒前
11秒前
nanfang完成签到 ,获得积分10
12秒前
liuzhanyu发布了新的文献求助10
12秒前
温暖宛筠发布了新的文献求助10
12秒前
111完成签到 ,获得积分10
15秒前
15秒前
波比不菜完成签到,获得积分10
15秒前
英俊的铭应助ZZZ333采纳,获得10
16秒前
16秒前
领导范儿应助过时的秋尽采纳,获得10
16秒前
dddd发布了新的文献求助30
16秒前
HtheJ完成签到,获得积分10
17秒前
11完成签到,获得积分10
17秒前
加菲猫完成签到,获得积分10
17秒前
燕子完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
李晓凤发布了新的文献求助10
19秒前
19秒前
我嘞个豆应助积极的如之采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993