Measurements of peri-prostatic adipose tissue by MRI predict bone metastasis in patients with newly diagnosed prostate cancer

医学 前列腺癌 前列腺 脂肪组织 转移 佩里 骨转移 癌症 磁共振成像 肿瘤科 内科学 放射科 病理
作者
Bohao Liu,Yunhua Mao,Xiaoyang Li,Rui-Xiang Luo,Weian Zhu,Huabin Su,Hengda Zeng,C. Chen,Xiao Zhao,Chen Zou,Yun Luo
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1393650
摘要

Objectives To investigate the role of MRI measurements of peri-prostatic adipose tissue (PPAT) in predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Methods We performed a retrospective study on 156 patients newly diagnosed with PCa by prostate biopsy between October 2010 and November 2022. Clinicopathologic characteristics were collected. Measurements including PPAT volume and prostate volume were calculated by MRI, and the normalized PPAT (PPAT volume/prostate volume) was computed. Independent predictors of BM were determined by univariate and multivariate logistic regression analysis, and a new nomogram was developed based on the predictors. Receiver operating characteristic (ROC) curves were used to estimate predictive performance. Results PPAT and normalized PPAT were associated with BM (P<0.001). Normalized PPAT positively correlated with clinical T stage(cT), clinical N stage(cN), and Grading Groups(P<0.05). The results of ROC curves indicated that PPAT and normalized PPAT had promising predictive value for BM with the AUC of 0.684 and 0.775 respectively. Univariate and multivariate analysis revealed that high normalized PPAT, cN, and alkaline phosphatase(ALP) were independently predictors of BM. The nomogram was developed and the concordance index(C-index) was 0.856. Conclusions Normalized PPAT is an independent predictor for BM among with cN, and ALP. Normalized PPAT may help predict BM in patients with newly diagnosed prostate cancer, thus providing adjunctive information for BM risk stratification and bone scan selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄子发布了新的文献求助10
刚刚
刚刚
zhu发布了新的文献求助10
刚刚
1秒前
卡卡完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
ines完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
cheers发布了新的文献求助10
2秒前
华仔应助YUMI采纳,获得10
2秒前
2秒前
2秒前
Khr1stINK发布了新的文献求助20
2秒前
lolly完成签到,获得积分10
3秒前
zhu发布了新的文献求助10
3秒前
李爱国应助kaiqiang采纳,获得10
3秒前
5秒前
pzh发布了新的文献求助10
5秒前
Yuan发布了新的文献求助10
5秒前
李永正发布了新的文献求助10
5秒前
长情青烟发布了新的文献求助10
6秒前
lolly发布了新的文献求助10
7秒前
orixero应助温酒叙人生采纳,获得10
7秒前
Baegal发布了新的文献求助10
7秒前
大力帽子应助jiangmiao采纳,获得10
7秒前
Owen应助不回首采纳,获得10
7秒前
白云发布了新的文献求助10
8秒前
8秒前
爱学习的椰子完成签到 ,获得积分10
9秒前
多云发布了新的文献求助30
9秒前
小二郎应助cheers采纳,获得10
9秒前
LGL完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406