Measurements of peri-prostatic adipose tissue by MRI predict bone metastasis in patients with newly diagnosed prostate cancer

医学 前列腺癌 前列腺 脂肪组织 转移 佩里 骨转移 癌症 磁共振成像 肿瘤科 内科学 放射科 病理
作者
Bohao Liu,Yunhua Mao,Xiaoyang Li,Rui-Xiang Luo,Weian Zhu,Huabin Su,Hengda Zeng,C. Chen,Xiao Zhao,Chen Zou,Yun Luo
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1393650
摘要

Objectives To investigate the role of MRI measurements of peri-prostatic adipose tissue (PPAT) in predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Methods We performed a retrospective study on 156 patients newly diagnosed with PCa by prostate biopsy between October 2010 and November 2022. Clinicopathologic characteristics were collected. Measurements including PPAT volume and prostate volume were calculated by MRI, and the normalized PPAT (PPAT volume/prostate volume) was computed. Independent predictors of BM were determined by univariate and multivariate logistic regression analysis, and a new nomogram was developed based on the predictors. Receiver operating characteristic (ROC) curves were used to estimate predictive performance. Results PPAT and normalized PPAT were associated with BM (P<0.001). Normalized PPAT positively correlated with clinical T stage(cT), clinical N stage(cN), and Grading Groups(P<0.05). The results of ROC curves indicated that PPAT and normalized PPAT had promising predictive value for BM with the AUC of 0.684 and 0.775 respectively. Univariate and multivariate analysis revealed that high normalized PPAT, cN, and alkaline phosphatase(ALP) were independently predictors of BM. The nomogram was developed and the concordance index(C-index) was 0.856. Conclusions Normalized PPAT is an independent predictor for BM among with cN, and ALP. Normalized PPAT may help predict BM in patients with newly diagnosed prostate cancer, thus providing adjunctive information for BM risk stratification and bone scan selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx完成签到,获得积分0
刚刚
迟迟完成签到 ,获得积分10
1秒前
1秒前
高挑的若雁完成签到 ,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
日富一日完成签到 ,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
七院发布了新的文献求助50
2秒前
许砚完成签到,获得积分10
2秒前
secbox完成签到,获得积分0
3秒前
4秒前
谦让可冥发布了新的文献求助10
4秒前
zzx发布了新的文献求助10
4秒前
不再方里发布了新的文献求助10
5秒前
可爱的函函应助gwh采纳,获得10
5秒前
鳗鱼诗蕊发布了新的文献求助10
6秒前
LLM完成签到,获得积分20
6秒前
ZZY发布了新的文献求助10
7秒前
酷波er应助许砚采纳,获得10
8秒前
9秒前
9秒前
yangkang完成签到,获得积分10
10秒前
沈海完成签到,获得积分10
10秒前
大模型应助Cting采纳,获得10
12秒前
12秒前
浮游应助清新的花卷采纳,获得10
12秒前
陈强强完成签到,获得积分20
13秒前
0707007发布了新的文献求助10
13秒前
皮蛋发布了新的文献求助10
13秒前
14秒前
平淡小白菜完成签到,获得积分10
15秒前
wx完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429