Measurements of peri-prostatic adipose tissue by MRI predict bone metastasis in patients with newly diagnosed prostate cancer

医学 前列腺癌 前列腺 脂肪组织 转移 佩里 骨转移 癌症 磁共振成像 肿瘤科 内科学 放射科 病理
作者
Bohao Liu,Yunhua Mao,Xiaoyang Li,Rui-Xiang Luo,Weian Zhu,Huabin Su,Hengda Zeng,C. Chen,Xiao Zhao,Chen Zou,Yun Luo
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1393650
摘要

Objectives To investigate the role of MRI measurements of peri-prostatic adipose tissue (PPAT) in predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Methods We performed a retrospective study on 156 patients newly diagnosed with PCa by prostate biopsy between October 2010 and November 2022. Clinicopathologic characteristics were collected. Measurements including PPAT volume and prostate volume were calculated by MRI, and the normalized PPAT (PPAT volume/prostate volume) was computed. Independent predictors of BM were determined by univariate and multivariate logistic regression analysis, and a new nomogram was developed based on the predictors. Receiver operating characteristic (ROC) curves were used to estimate predictive performance. Results PPAT and normalized PPAT were associated with BM (P<0.001). Normalized PPAT positively correlated with clinical T stage(cT), clinical N stage(cN), and Grading Groups(P<0.05). The results of ROC curves indicated that PPAT and normalized PPAT had promising predictive value for BM with the AUC of 0.684 and 0.775 respectively. Univariate and multivariate analysis revealed that high normalized PPAT, cN, and alkaline phosphatase(ALP) were independently predictors of BM. The nomogram was developed and the concordance index(C-index) was 0.856. Conclusions Normalized PPAT is an independent predictor for BM among with cN, and ALP. Normalized PPAT may help predict BM in patients with newly diagnosed prostate cancer, thus providing adjunctive information for BM risk stratification and bone scan selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
535988发布了新的文献求助10
1秒前
帅气书白发布了新的文献求助10
1秒前
lanyun00123发布了新的文献求助50
2秒前
marcg4发布了新的文献求助10
7秒前
无能的丈夫完成签到,获得积分10
7秒前
小值钱完成签到,获得积分10
8秒前
昔我往矣发布了新的文献求助10
8秒前
研友_VZG7GZ应助zxt采纳,获得10
8秒前
香蕉觅云应助LU采纳,获得10
9秒前
楽l完成签到,获得积分10
10秒前
风十二完成签到 ,获得积分10
10秒前
11秒前
11秒前
Kimo关注了科研通微信公众号
12秒前
13秒前
乐观的颦发布了新的文献求助10
14秒前
14秒前
浮游应助浮浮世世采纳,获得10
15秒前
orixero应助东北老王采纳,获得30
16秒前
Echopotter发布了新的文献求助50
17秒前
jaewoo发布了新的文献求助10
18秒前
19秒前
19秒前
Raven应助Sandy采纳,获得10
19秒前
鱼鱼鱼完成签到,获得积分20
19秒前
一条小鱼发布了新的文献求助10
20秒前
华仔应助535988采纳,获得10
21秒前
22秒前
笑点低乐天关注了科研通微信公众号
22秒前
爆杀小白鼠完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
早茶可口完成签到,获得积分10
24秒前
LU发布了新的文献求助10
26秒前
27秒前
27秒前
健壮的蘑菇完成签到,获得积分10
27秒前
27秒前
lanyun00123完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353662
求助须知:如何正确求助?哪些是违规求助? 4486240
关于积分的说明 13965754
捐赠科研通 4386589
什么是DOI,文献DOI怎么找? 2410006
邀请新用户注册赠送积分活动 1402322
关于科研通互助平台的介绍 1376088