Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging

磁共振成像 腰椎间盘突出症 分级(工程) 医学 放射科 腰椎 核磁共振 核医学 物理 工程类 土木工程
作者
Yefu Xu,S. J. Zheng,Qingyi Tian,Zhuoyan Kou,Wenqing Li,Xinhui Xie,Xiao‐Tao Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:5
标识
DOI:10.1002/jmri.29403
摘要

Background Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time‐consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities. Purpose To develop an interpretable DL model capable of grading and localizing LDH. Study Type Retrospective. Subjects 1496 patients (M/F: 783/713) were evaluated, and randomly divided into training (70%), validation (10%), and test (20%) sets. Field Strength/Sequence 1.5T MRI for axial T2‐weighted sequences (spin echo). Assessment The training set was annotated by three spinal surgeons using the Michigan State University classification to train the DL model. The test set was annotated by a spinal surgery expert (as ground truth labels), and two spinal surgeons (comparison with the trained model). An external test set was employed to evaluate the generalizability of the DL model. Statistical Tests Calculated intersection over union (IoU) for detection consistency, utilized Gwet's AC1 to assess interobserver agreement, and evaluated model performance based on sensitivity and specificity, with statistical significance set at P < 0.05. Results The DL model achieved high detection consistency in both the internal test dataset (grading: mean IoU 0.84, recall 99.6%; localization: IoU 0.82, recall 99.5%) and external test dataset (grading: 0.72, 98.0%; localization: 0.71, 97.6%). For internal testing, the DL model (grading: 0.81; localization: 0.76), Rater 1 (0.88; 0.82), and Rater 2 (0.86; 0.83) demonstrated results highly consistent with the ground truth labels. The overall sensitivity of the DL model was 87.0% for grading and 84.0% for localization, while the specificity was 95.5% and 94.4%. For external testing, the DL model showed an appreciable decrease in consistency (grading: 0.69; localization: 0.66), sensitivity (77.2%; 76.7%), and specificity (92.3%; 91.8%). Data Conclusion The classification capabilities of the DL model closely resemble those of spinal surgeons. For future improvement, enriching the diversity of cases could enhance the model's generalization. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕业就好发布了新的文献求助10
刚刚
wusanlinshi完成签到,获得积分20
1秒前
娜行发布了新的文献求助10
1秒前
大雄完成签到,获得积分10
1秒前
kai发布了新的文献求助10
2秒前
科研通AI5应助老西瓜采纳,获得10
2秒前
核弹完成签到 ,获得积分10
2秒前
kevin完成签到,获得积分10
3秒前
Chem is try发布了新的文献求助10
3秒前
皖医梁朝伟完成签到 ,获得积分10
3秒前
汉堡包应助野性的南蕾采纳,获得10
3秒前
3秒前
便宜小师傅完成签到 ,获得积分10
4秒前
霏冉完成签到,获得积分10
4秒前
5秒前
Grayball应助包容的剑采纳,获得10
5秒前
董小天天完成签到,获得积分10
5秒前
5秒前
华仔应助qym采纳,获得10
5秒前
琅琊为刃完成签到,获得积分10
6秒前
酷波er应助hhh采纳,获得10
6秒前
6秒前
小巧的香氛完成签到 ,获得积分10
7秒前
7秒前
7秒前
zxcv23发布了新的文献求助10
7秒前
没有名称发布了新的文献求助10
7秒前
8秒前
8秒前
zier完成签到 ,获得积分10
9秒前
阡陌完成签到,获得积分10
9秒前
华仔应助毕业就好采纳,获得10
9秒前
liyi发布了新的文献求助10
9秒前
难过小天鹅完成签到,获得积分10
10秒前
非常可爱发布了新的文献求助20
10秒前
eee发布了新的文献求助10
10秒前
幸福胡萝卜完成签到,获得积分10
10秒前
11秒前
科研通AI5应助琅琊为刃采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672