亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging

磁共振成像 腰椎间盘突出症 分级(工程) 医学 放射科 腰椎 核磁共振 核医学 物理 工程类 土木工程
作者
Yefu Xu,S. J. Zheng,Qingyi Tian,Zhuoyan Kou,Wenqing Li,Xinhui Xie,Xiao‐Tao Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:9
标识
DOI:10.1002/jmri.29403
摘要

Background Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time‐consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities. Purpose To develop an interpretable DL model capable of grading and localizing LDH. Study Type Retrospective. Subjects 1496 patients (M/F: 783/713) were evaluated, and randomly divided into training (70%), validation (10%), and test (20%) sets. Field Strength/Sequence 1.5T MRI for axial T2‐weighted sequences (spin echo). Assessment The training set was annotated by three spinal surgeons using the Michigan State University classification to train the DL model. The test set was annotated by a spinal surgery expert (as ground truth labels), and two spinal surgeons (comparison with the trained model). An external test set was employed to evaluate the generalizability of the DL model. Statistical Tests Calculated intersection over union (IoU) for detection consistency, utilized Gwet's AC1 to assess interobserver agreement, and evaluated model performance based on sensitivity and specificity, with statistical significance set at P < 0.05. Results The DL model achieved high detection consistency in both the internal test dataset (grading: mean IoU 0.84, recall 99.6%; localization: IoU 0.82, recall 99.5%) and external test dataset (grading: 0.72, 98.0%; localization: 0.71, 97.6%). For internal testing, the DL model (grading: 0.81; localization: 0.76), Rater 1 (0.88; 0.82), and Rater 2 (0.86; 0.83) demonstrated results highly consistent with the ground truth labels. The overall sensitivity of the DL model was 87.0% for grading and 84.0% for localization, while the specificity was 95.5% and 94.4%. For external testing, the DL model showed an appreciable decrease in consistency (grading: 0.69; localization: 0.66), sensitivity (77.2%; 76.7%), and specificity (92.3%; 91.8%). Data Conclusion The classification capabilities of the DL model closely resemble those of spinal surgeons. For future improvement, enriching the diversity of cases could enhance the model's generalization. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Wangyingjie5采纳,获得10
刚刚
ding应助骆西西采纳,获得10
1秒前
2秒前
Orange应助xin采纳,获得10
5秒前
7秒前
脑洞疼应助光轮2000采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得30
9秒前
9秒前
Criminology34应助科研通管家采纳,获得30
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得20
9秒前
9秒前
共享精神应助呆萌的访枫采纳,获得10
14秒前
李健应助777采纳,获得10
15秒前
20秒前
23秒前
23秒前
26秒前
Ethan发布了新的文献求助10
27秒前
优秀的甜菜完成签到,获得积分10
28秒前
慕青应助英俊的如霜采纳,获得10
28秒前
光轮2000发布了新的文献求助10
30秒前
32秒前
zhubin完成签到 ,获得积分10
34秒前
海咲umi完成签到,获得积分10
34秒前
34秒前
42秒前
777发布了新的文献求助10
47秒前
breeze完成签到,获得积分10
47秒前
薛wen晶完成签到 ,获得积分10
56秒前
虚无完成签到,获得积分10
1分钟前
1分钟前
小旭vip完成签到 ,获得积分10
1分钟前
牛八先生完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ui24完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508