亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging

磁共振成像 腰椎间盘突出症 分级(工程) 医学 放射科 腰椎 核磁共振 核医学 物理 工程类 土木工程
作者
Yefu Xu,S. J. Zheng,Qingyi Tian,Zhuoyan Kou,Wenqing Li,Xinhui Xie,Xiao‐Tao Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:4
标识
DOI:10.1002/jmri.29403
摘要

Background Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time‐consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities. Purpose To develop an interpretable DL model capable of grading and localizing LDH. Study Type Retrospective. Subjects 1496 patients (M/F: 783/713) were evaluated, and randomly divided into training (70%), validation (10%), and test (20%) sets. Field Strength/Sequence 1.5T MRI for axial T2‐weighted sequences (spin echo). Assessment The training set was annotated by three spinal surgeons using the Michigan State University classification to train the DL model. The test set was annotated by a spinal surgery expert (as ground truth labels), and two spinal surgeons (comparison with the trained model). An external test set was employed to evaluate the generalizability of the DL model. Statistical Tests Calculated intersection over union (IoU) for detection consistency, utilized Gwet's AC1 to assess interobserver agreement, and evaluated model performance based on sensitivity and specificity, with statistical significance set at P < 0.05. Results The DL model achieved high detection consistency in both the internal test dataset (grading: mean IoU 0.84, recall 99.6%; localization: IoU 0.82, recall 99.5%) and external test dataset (grading: 0.72, 98.0%; localization: 0.71, 97.6%). For internal testing, the DL model (grading: 0.81; localization: 0.76), Rater 1 (0.88; 0.82), and Rater 2 (0.86; 0.83) demonstrated results highly consistent with the ground truth labels. The overall sensitivity of the DL model was 87.0% for grading and 84.0% for localization, while the specificity was 95.5% and 94.4%. For external testing, the DL model showed an appreciable decrease in consistency (grading: 0.69; localization: 0.66), sensitivity (77.2%; 76.7%), and specificity (92.3%; 91.8%). Data Conclusion The classification capabilities of the DL model closely resemble those of spinal surgeons. For future improvement, enriching the diversity of cases could enhance the model's generalization. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只如初完成签到,获得积分10
25秒前
28秒前
42秒前
酷波er应助zjl123采纳,获得10
44秒前
50秒前
爱撒娇的孤丹完成签到 ,获得积分10
57秒前
1分钟前
Alexis2047发布了新的文献求助10
1分钟前
Alexis2047完成签到,获得积分10
1分钟前
1分钟前
2分钟前
shiruyan完成签到,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
岩新完成签到 ,获得积分10
2分钟前
shiruyan发布了新的文献求助200
2分钟前
2分钟前
zjl123发布了新的文献求助10
2分钟前
jacs111完成签到,获得积分10
2分钟前
3分钟前
MSQWE完成签到,获得积分10
3分钟前
3分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科目三应助某某某采纳,获得10
4分钟前
吉吉米米完成签到,获得积分10
4分钟前
CipherSage应助zjl123采纳,获得10
4分钟前
5分钟前
5分钟前
wenwen完成签到 ,获得积分10
5分钟前
zjl123发布了新的文献求助10
5分钟前
5分钟前
随性随缘随命完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
大模型应助qqq采纳,获得10
5分钟前
CATH完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482458
捐赠科研通 2611452
什么是DOI,文献DOI怎么找? 1425890
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005