Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging

磁共振成像 腰椎间盘突出症 分级(工程) 医学 放射科 腰椎 核磁共振 核医学 物理 工程类 土木工程
作者
Yefu Xu,S. J. Zheng,Qingyi Tian,Zhuoyan Kou,Wenqing Li,Xinhui Xie,Xiao‐Tao Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:9
标识
DOI:10.1002/jmri.29403
摘要

Background Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time‐consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities. Purpose To develop an interpretable DL model capable of grading and localizing LDH. Study Type Retrospective. Subjects 1496 patients (M/F: 783/713) were evaluated, and randomly divided into training (70%), validation (10%), and test (20%) sets. Field Strength/Sequence 1.5T MRI for axial T2‐weighted sequences (spin echo). Assessment The training set was annotated by three spinal surgeons using the Michigan State University classification to train the DL model. The test set was annotated by a spinal surgery expert (as ground truth labels), and two spinal surgeons (comparison with the trained model). An external test set was employed to evaluate the generalizability of the DL model. Statistical Tests Calculated intersection over union (IoU) for detection consistency, utilized Gwet's AC1 to assess interobserver agreement, and evaluated model performance based on sensitivity and specificity, with statistical significance set at P < 0.05. Results The DL model achieved high detection consistency in both the internal test dataset (grading: mean IoU 0.84, recall 99.6%; localization: IoU 0.82, recall 99.5%) and external test dataset (grading: 0.72, 98.0%; localization: 0.71, 97.6%). For internal testing, the DL model (grading: 0.81; localization: 0.76), Rater 1 (0.88; 0.82), and Rater 2 (0.86; 0.83) demonstrated results highly consistent with the ground truth labels. The overall sensitivity of the DL model was 87.0% for grading and 84.0% for localization, while the specificity was 95.5% and 94.4%. For external testing, the DL model showed an appreciable decrease in consistency (grading: 0.69; localization: 0.66), sensitivity (77.2%; 76.7%), and specificity (92.3%; 91.8%). Data Conclusion The classification capabilities of the DL model closely resemble those of spinal surgeons. For future improvement, enriching the diversity of cases could enhance the model's generalization. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boyaray发布了新的文献求助10
1秒前
1秒前
Beyond驳回了wanci应助
2秒前
2秒前
浮游应助飞飞采纳,获得10
2秒前
R1ght发布了新的文献求助10
3秒前
科目三应助焚天尘殇采纳,获得10
4秒前
Aurora完成签到 ,获得积分10
4秒前
AptRank完成签到,获得积分10
5秒前
大个应助杨涛采纳,获得10
5秒前
Ly发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
李婷婷发布了新的文献求助10
8秒前
9秒前
Raine完成签到,获得积分10
10秒前
ustina完成签到,获得积分10
10秒前
儒雅红牛完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
tang应助万类霜天竞自由采纳,获得50
13秒前
13秒前
13秒前
13秒前
S月小小发布了新的文献求助10
14秒前
15秒前
16秒前
所所应助秋风采纳,获得10
16秒前
Thien发布了新的文献求助30
17秒前
焚天尘殇发布了新的文献求助10
17秒前
17秒前
上官老黑完成签到 ,获得积分10
17秒前
开心果发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
19秒前
Ava应助李婷婷采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990904
求助须知:如何正确求助?哪些是违规求助? 4239640
关于积分的说明 13207664
捐赠科研通 4034323
什么是DOI,文献DOI怎么找? 2207244
邀请新用户注册赠送积分活动 1218305
关于科研通互助平台的介绍 1136629