Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging

磁共振成像 腰椎间盘突出症 分级(工程) 医学 放射科 腰椎 核磁共振 核医学 物理 工程类 土木工程
作者
Yefu Xu,S. J. Zheng,Qingyi Tian,Zhuoyan Kou,Wenqing Li,Xinhui Xie,Xiao‐Tao Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:9
标识
DOI:10.1002/jmri.29403
摘要

Background Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time‐consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities. Purpose To develop an interpretable DL model capable of grading and localizing LDH. Study Type Retrospective. Subjects 1496 patients (M/F: 783/713) were evaluated, and randomly divided into training (70%), validation (10%), and test (20%) sets. Field Strength/Sequence 1.5T MRI for axial T2‐weighted sequences (spin echo). Assessment The training set was annotated by three spinal surgeons using the Michigan State University classification to train the DL model. The test set was annotated by a spinal surgery expert (as ground truth labels), and two spinal surgeons (comparison with the trained model). An external test set was employed to evaluate the generalizability of the DL model. Statistical Tests Calculated intersection over union (IoU) for detection consistency, utilized Gwet's AC1 to assess interobserver agreement, and evaluated model performance based on sensitivity and specificity, with statistical significance set at P < 0.05. Results The DL model achieved high detection consistency in both the internal test dataset (grading: mean IoU 0.84, recall 99.6%; localization: IoU 0.82, recall 99.5%) and external test dataset (grading: 0.72, 98.0%; localization: 0.71, 97.6%). For internal testing, the DL model (grading: 0.81; localization: 0.76), Rater 1 (0.88; 0.82), and Rater 2 (0.86; 0.83) demonstrated results highly consistent with the ground truth labels. The overall sensitivity of the DL model was 87.0% for grading and 84.0% for localization, while the specificity was 95.5% and 94.4%. For external testing, the DL model showed an appreciable decrease in consistency (grading: 0.69; localization: 0.66), sensitivity (77.2%; 76.7%), and specificity (92.3%; 91.8%). Data Conclusion The classification capabilities of the DL model closely resemble those of spinal surgeons. For future improvement, enriching the diversity of cases could enhance the model's generalization. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的井发布了新的文献求助30
1秒前
3秒前
7秒前
7秒前
9秒前
宅多点应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
宅多点应助科研通管家采纳,获得10
9秒前
natmed应助科研通管家采纳,获得10
10秒前
10秒前
打打应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
草东树应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
沈达完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
warithy应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
shhoing应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
小木没有烦恼完成签到 ,获得积分10
11秒前
无辜的井完成签到,获得积分10
12秒前
qayqay003发布了新的文献求助10
12秒前
沈达发布了新的文献求助10
13秒前
mm完成签到,获得积分10
16秒前
16秒前
20秒前
弗洛伊德完成签到 ,获得积分10
26秒前
精明芷巧完成签到 ,获得积分10
26秒前
斯文败类应助wdchenaic采纳,获得10
29秒前
Hello应助王玉娇采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951