亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confidence-Weighted Dual-Teacher Networks With Biased Contrastive Learning for Semi-Supervised Semantic Segmentation in Remote Sensing Images

计算机科学 人工智能 分割 对偶(语法数字) 图像分割 模式识别(心理学) 自然语言处理 遥感 计算机视觉 地质学 文学类 艺术
作者
Yi Xin,Zide Fan,Xiyu Qi,Yidan Zhang,Xinming Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2024.3376352
摘要

Semantic segmentation of remote sensing images is vital in remote sensing technology. High-quality models for this task require a vast amount of images, manual annotation is a process that is time-consuming and labor-intensive. Consequently, this has catalyzed the emergence of semi-supervised semantic segmentation methods. However, the complexity of foreground categories in remote sensing images poses a challenge to maintaining prediction consistency. Moreover, inherent characteristics such as intra-class variations and inter-class similarities result in a certain degree of confusion among features of different classes in the feature space. This impacts the final classification results. In order to improve the model's consistency and optimize the classification of categories based on features, this paper proposes a new semi-supervised semantic segmentation framework that combines consistency regularization and contrastive learning. In terms of consistency regularization, the proposed method incorporates dual teacher networks, introduces ClassMix for image augmentation, and utilizes confidence levels to integrate the predictions from these networks. By introducing perturbations at both the network and image levels, while simultaneously maintaining consistency, the predictive prowess and generalization ability of the model are enhanced. For contrastive learning, Postive-Unlabeled Learning (PU-Learning) is employed to improve the problem of mis-sampling when selecting features. At the same time, higher biased weights are allocated to more challenging negative samples, thereby elevating the complexity of feature learning and enhancing the discriminative capability of the final feature representation space. Our extensive experiments on the ISPRS Vaihingen dataset and the challenging iSAID dataset have served to underscore the superior performance of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助shl采纳,获得10
5秒前
欣欣发布了新的文献求助10
5秒前
研友_ngKYYn发布了新的文献求助10
5秒前
10秒前
11秒前
Honghao发布了新的文献求助10
14秒前
研友_ngKYYn完成签到,获得积分20
14秒前
Jasper应助科研通管家采纳,获得10
35秒前
37秒前
欣欣完成签到,获得积分10
38秒前
41秒前
47秒前
49秒前
科研通AI2S应助andrele采纳,获得10
49秒前
江江发布了新的文献求助10
52秒前
程程发布了新的文献求助10
53秒前
程程完成签到,获得积分10
1分钟前
1分钟前
sarah发布了新的文献求助10
1分钟前
科研通AI5应助wegsa采纳,获得10
1分钟前
1分钟前
踏实嚣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Honghao发布了新的文献求助10
1分钟前
CY完成签到,获得积分10
1分钟前
wanci应助DDZ采纳,获得10
1分钟前
散步的刺猬完成签到,获得积分10
1分钟前
yuyiyi完成签到,获得积分10
1分钟前
一一发布了新的文献求助10
1分钟前
DDZ完成签到,获得积分20
1分钟前
1分钟前
珊珊完成签到,获得积分10
1分钟前
烟花应助轻松的贞采纳,获得10
1分钟前
1分钟前
DDZ发布了新的文献求助10
1分钟前
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390729
捐赠科研通 2831033
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803