Disentangling the biotic and abiotic drivers of bird–building collisions in a tropical Asian city with ecological niche modeling

地理 生态学 碰撞 生态位 非生物成分 生物 栖息地 计算机安全 计算机科学
作者
David J. X. Tan,Nicholas Freymueller,Kah Ming Teo,William S. Symes,Shawn Lum,Frank E. Rheindt
出处
期刊:Conservation Biology [Wiley]
卷期号:38 (4) 被引量:2
标识
DOI:10.1111/cobi.14255
摘要

Abstract Bird collisions with buildings are responsible for a large number of bird deaths in cities around the world, yet they remain poorly studied outside North America. We conducted one of the first citywide fine‐scale and landscape‐scale analyses of bird–building collisions in Asia and used maximum entropy modeling (as commonly applied to species distribution modeling) in a novel way to assess the drivers of bird–building collisions in the tropical city‐state of Singapore. We combined 7 years of community science observations with publicly available building and remote sensing data. Drivers of bird–building collisions varied among taxa. Some migratory taxa had a higher relative collision risk that was linked to areas with high building densities and high levels of nocturnal blue light pollution. Nonmigratory taxa had a higher collision risk in areas near forest cover. Projecting our results onto official long‐term land‐use plans, we predicted that future increases in bird–building collision risk stemmed from increases in blue light pollution and encroachment of buildings into forested areas and identified 6 potential collision hotspots linked to future developments. Our results suggest that bird–building collision mitigation measures need to account for the different drivers of collision for resident and migratory species and show that combining community science and ecological modeling can be a powerful approach for analyzing bird–building collision data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
mmmmm完成签到,获得积分10
1秒前
洁净白容完成签到,获得积分10
1秒前
大个应助孟孟采纳,获得10
1秒前
小镇的废物完成签到,获得积分10
1秒前
柴郡喵完成签到,获得积分10
2秒前
SYLH应助小熊采纳,获得10
3秒前
妹妹发布了新的文献求助10
3秒前
3秒前
赘婿应助我必定发nature采纳,获得20
4秒前
Ava应助kofbird采纳,获得50
5秒前
zz完成签到,获得积分10
5秒前
星辰大海应助ybwei2008_163采纳,获得10
5秒前
7秒前
7秒前
QJYKKK完成签到,获得积分10
7秒前
composite66完成签到,获得积分10
7秒前
ccchao发布了新的文献求助30
8秒前
充电宝应助十三采纳,获得10
8秒前
大个应助橙橙橙采纳,获得10
8秒前
Dandanhuang完成签到,获得积分10
8秒前
FashionBoy应助孟孟采纳,获得30
10秒前
畅快的刚完成签到,获得积分10
12秒前
12秒前
xxxx完成签到,获得积分10
12秒前
vain发布了新的文献求助10
12秒前
李健应助芒果小鹌鹑采纳,获得10
12秒前
cc完成签到,获得积分10
13秒前
这个名字是不是独一无二完成签到,获得积分10
13秒前
颗粒完成签到,获得积分10
14秒前
14秒前
javeeen完成签到,获得积分10
15秒前
应俊完成签到 ,获得积分10
15秒前
1234完成签到 ,获得积分10
16秒前
轻松元柏完成签到,获得积分10
17秒前
WN发布了新的文献求助10
17秒前
17秒前
我必定发nature给我必定发nature的求助进行了留言
18秒前
组织因子发布了新的文献求助10
18秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048