Intelligent Decision-Making Method for AUV Path Planning Against Ocean Current Disturbance Via Reinforcement Learning

强化学习 计算机科学 扰动(地质) 运动规划 电流(流体) 人工智能 路径(计算) 机器人 计算机网络 海洋学 地质学 古生物学
作者
Jiabao Wen,Huiao Dai,Jingyi He,Lijiao Sun,Liqing Gao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (24): 38965-38975
标识
DOI:10.1109/jiot.2024.3384476
摘要

With the development of society and the economy, low-carbon and low-energy means of exploiting marine resources are receiving increasing attention. Autonomous path planning is a fundamental capability for IoT Autonomous Underwater Vehicle (AUV) to carry out ocean exploration tasks. Currently, the main issue lies in the numerous disturbances and uncertainties present in the marine environment during practical applications, which can significantly impact path planning, leading to high energy consumption and carbon emissions. To address this challenge, this paper presents a sustainable reinforcement learning algorithm for handling time-varying current disturbances to achieve low-carbon AUV path planning, which is delineated into three steps. Firstly, a three-dimensional time-varying current environment is established as the environmental framework for reinforcement learning, and the dynamic model of the AUV is formulated. Secondly, to enhance training efficiency and reduce AUV's energy consumption, this paper puts forth the OCDRP (Ocean Current Disturbance Rejection PPO) algorithm, which incorporates tidal current information to enhance the AUV's resilience to time-varying currents. Lastly, expectile regression methods are introduced to facilitate the algorithm's convergence. Experimental results confirm the efficacy of the proposed algorithm and its adaptability to time-varying currents, making it an efficient, adaptable, and low-carbon sustainable path planning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
札七完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
www发布了新的文献求助10
2秒前
2秒前
3秒前
情怀应助王亚茹采纳,获得10
3秒前
3秒前
3秒前
劲秉应助席以亦采纳,获得10
4秒前
汤圆完成签到,获得积分10
4秒前
4秒前
leyellows发布了新的文献求助10
5秒前
京羊完成签到 ,获得积分10
6秒前
FIF发布了新的文献求助30
6秒前
款冬发布了新的文献求助10
7秒前
lvlv发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
jinzhen发布了新的文献求助10
7秒前
7秒前
是然发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI5应助Panda_Zhou采纳,获得10
9秒前
9秒前
9秒前
树枝丫发布了新的文献求助10
9秒前
机灵的宛亦完成签到 ,获得积分10
9秒前
养条狗吧发布了新的文献求助10
10秒前
yyy完成签到,获得积分10
10秒前
ATLI应助焦杨波采纳,获得20
10秒前
10秒前
卓哥完成签到,获得积分10
11秒前
11秒前
po关注了科研通微信公众号
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663580
求助须知:如何正确求助?哪些是违规求助? 3224069
关于积分的说明 9754981
捐赠科研通 2933971
什么是DOI,文献DOI怎么找? 1606503
邀请新用户注册赠送积分活动 758539
科研通“疑难数据库(出版商)”最低求助积分说明 734891