Comparison of Three Machine Learning Algorithms for Retrieving Soil Moisture Information from Sentinel-1A SAR Data in Northwest Shandong Plain, China

中国 算法 滨海平原 遥感 环境科学 计算机科学 地质学 地理 古生物学 考古
作者
C. Hou,Mou Leong Tan,Longhui Li,Zhang Fei
出处
期刊:Advances in Space Research [Elsevier]
卷期号:74 (1): 75-88 被引量:1
标识
DOI:10.1016/j.asr.2024.03.047
摘要

Soil moisture (SM) plays a critical role in the growth and management of grain in semi-humid regions. However, little is known about how to integrate satellite data with machine learning to accurately retrieve SM information in these areas. This study compares the capability of three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), to extract SM information over the Northwest Shandong Plain using multi-phase dual-polarized Sentinel-1A satellite data. The backscattering coefficients were obtained through standard intensity and phase processing to calculate the SAR indices, and several characteristic parameters were extracted as impact factors using the Cloude-Pottier decomposition. The importance of these factors was analyzed, while the performance of each machine learning algorithm was comprehensively evaluated using the K-fold cross-validation method. The best-performing model was utilized to retrieve the spatio-temporal changes in SM in the study area. The findings indicate the following: (1) The first eigenvalue has the greatest impact on retrieval accuracy, followed by entropy, where the intensity component of Shannon's entropy is more important than its polarization component; (2) The addition of more impact factors does not bring a continuous improvement in model performance, but the optimal factor combinations differ for different machine learning retrieval models; (3) The RF model trained using the IM12 combination demonstrates better performance than SVM and ANN in retrieving SM information, with a coefficient of determination (R2) of 0.55 and a root mean square error of 6.12 vol.% on the validation set. The level of SM in the Yellow River National Wetland Park is higher than that of the surrounding areas, with substantial seasonal changes. Precipitation, temperature, and vegetation significantly influence the regional variations in SM at the macroscopic level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷味发布了新的文献求助10
1秒前
独特安阳完成签到,获得积分10
3秒前
柒柒完成签到,获得积分10
3秒前
5秒前
岩鹰发布了新的文献求助10
6秒前
6秒前
内向半青完成签到 ,获得积分20
7秒前
活力的妙芙完成签到,获得积分10
9秒前
苹果白凡发布了新的文献求助10
10秒前
一禅完成签到 ,获得积分10
11秒前
zhaoman完成签到,获得积分10
13秒前
燕儿完成签到,获得积分10
14秒前
Mumu_完成签到 ,获得积分10
15秒前
武大帝77完成签到 ,获得积分10
16秒前
谨慎傲旋完成签到 ,获得积分10
17秒前
smm完成签到,获得积分10
21秒前
晴123完成签到,获得积分10
21秒前
23秒前
Z赵完成签到 ,获得积分10
24秒前
VanAllen完成签到,获得积分10
25秒前
迷路的沛芹完成签到 ,获得积分10
26秒前
26秒前
易槐发布了新的文献求助10
31秒前
TTDY完成签到 ,获得积分10
31秒前
2568269431完成签到 ,获得积分10
32秒前
Ss关闭了Ss文献求助
32秒前
tfsn20完成签到,获得积分0
34秒前
ptjam完成签到,获得积分10
35秒前
Meyako完成签到 ,获得积分10
35秒前
亚婷儿完成签到,获得积分10
39秒前
drift完成签到,获得积分10
39秒前
43秒前
武大聪明丶完成签到,获得积分10
45秒前
矮小的茹妖完成签到 ,获得积分10
47秒前
49秒前
浣熊小呆完成签到,获得积分10
52秒前
najibveto发布了新的文献求助10
52秒前
耍酷寻双完成签到 ,获得积分10
52秒前
cc完成签到,获得积分10
53秒前
Candice应助hyhyhyhy采纳,获得10
56秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3373048
求助须知:如何正确求助?哪些是违规求助? 2990465
关于积分的说明 8741491
捐赠科研通 2674235
什么是DOI,文献DOI怎么找? 1465041
科研通“疑难数据库(出版商)”最低求助积分说明 677749
邀请新用户注册赠送积分活动 669137