Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping

计算机科学 人工智能 梳理 计算机视觉 模式识别(心理学) 地图学 地理
作者
Nai‐Yu Pan,Teng‐Yi Huang,Jui‐Jung Yu,Hsu‐Hsia Peng,Tzu‐Chao Chuang,Yi‐Ru Lin,Hsiao‐Wen Chung,Ming‐Ting Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29373
摘要

Background The modified Look‐Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory‐induced misregistration to a given target image. Hypothesis Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory‐induced misregistration of MOLLI datasets. Study Type Retrospective. Population 1071 MOLLI datasets from 392 human participants. Field Strength/Sequence Modified Look‐Locker inversion recovery sequence at 3 T. Assessment A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor‐provided motion correction (MOCO) technique. Statistical Tests The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion‐corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed‐rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. Results The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor‐provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). Data Conclusion Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory‐induced heart displacements, may be beneficial for patients with difficulties in breath‐holding. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
善学以致用应助栗子采纳,获得10
2秒前
amy完成签到,获得积分10
2秒前
芜湖芜湖完成签到,获得积分10
2秒前
@@@发布了新的文献求助10
2秒前
2秒前
123完成签到,获得积分10
2秒前
傻傻的如之完成签到,获得积分10
3秒前
微笑发布了新的文献求助10
3秒前
i萝莉发布了新的文献求助30
3秒前
4秒前
4秒前
机灵水卉完成签到 ,获得积分10
4秒前
4秒前
4秒前
leezcc完成签到,获得积分0
4秒前
自然秋柳发布了新的文献求助10
4秒前
不配.应助发发蝶蝶采纳,获得10
5秒前
5秒前
壮观的幻柏完成签到,获得积分10
5秒前
吐司发布了新的文献求助10
5秒前
zwq发布了新的文献求助10
6秒前
无私石头完成签到,获得积分10
7秒前
133发布了新的文献求助10
7秒前
HEIKU应助梵天采纳,获得10
7秒前
醉熏的文轩完成签到,获得积分10
7秒前
CH发布了新的文献求助10
8秒前
李爱国应助跳跃碧灵采纳,获得10
8秒前
猴猴相聚猩猩相惜完成签到,获得积分10
8秒前
山山而川完成签到,获得积分10
8秒前
在水一方应助冰糕采纳,获得10
9秒前
10秒前
10秒前
11秒前
Ava应助黑咖喱采纳,获得10
12秒前
12秒前
12秒前
大个应助scl采纳,获得10
12秒前
@@@完成签到,获得积分20
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119151
求助须知:如何正确求助?哪些是违规求助? 2769545
关于积分的说明 7701518
捐赠科研通 2425012
什么是DOI,文献DOI怎么找? 1287917
科研通“疑难数据库(出版商)”最低求助积分说明 620698
版权声明 599962