Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping

计算机科学 人工智能 梳理 计算机视觉 模式识别(心理学) 地图学 地理
作者
Nai‐Yu Pan,Teng‐Yi Huang,Jui‐Jung Yu,Hsu‐Hsia Peng,Tzu‐Chao Chuang,Yi‐Ru Lin,Hsiao‐Wen Chung,Ming‐Ting Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29373
摘要

Background The modified Look‐Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory‐induced misregistration to a given target image. Hypothesis Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory‐induced misregistration of MOLLI datasets. Study Type Retrospective. Population 1071 MOLLI datasets from 392 human participants. Field Strength/Sequence Modified Look‐Locker inversion recovery sequence at 3 T. Assessment A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor‐provided motion correction (MOCO) technique. Statistical Tests The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion‐corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed‐rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. Results The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor‐provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). Data Conclusion Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory‐induced heart displacements, may be beneficial for patients with difficulties in breath‐holding. Level of Evidence 3 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ergatoid完成签到,获得积分10
刚刚
求学发布了新的文献求助10
刚刚
迷路豁完成签到 ,获得积分10
刚刚
Egoist完成签到,获得积分0
1秒前
YHX发布了新的文献求助10
1秒前
1秒前
暖阳完成签到 ,获得积分10
2秒前
高小明完成签到,获得积分10
2秒前
领导范儿应助饕餮采纳,获得10
2秒前
七兮完成签到,获得积分10
2秒前
lulu发布了新的文献求助10
2秒前
2秒前
Bminor完成签到,获得积分10
4秒前
纪间完成签到,获得积分10
5秒前
丁丁丁完成签到,获得积分10
6秒前
yeahCZY发布了新的文献求助10
6秒前
沉静丹寒完成签到,获得积分10
7秒前
干净之槐完成签到,获得积分10
7秒前
ZH完成签到 ,获得积分10
7秒前
庆庆完成签到 ,获得积分10
7秒前
666y完成签到,获得积分10
7秒前
7秒前
南檬发布了新的文献求助10
7秒前
洁净的酬海完成签到 ,获得积分10
7秒前
汤柏钧完成签到 ,获得积分10
8秒前
zq完成签到,获得积分10
8秒前
姣妹崽完成签到,获得积分10
8秒前
旺仔小馒头完成签到,获得积分10
8秒前
蘸糖冰美式完成签到,获得积分10
8秒前
8秒前
小马甲应助tiezhu采纳,获得10
9秒前
9秒前
wang11完成签到,获得积分10
9秒前
10秒前
1351567822应助司空沛槐采纳,获得80
10秒前
666666完成签到,获得积分10
11秒前
sddq完成签到,获得积分10
11秒前
烟花应助芒果豆豆采纳,获得10
11秒前
wangshibing完成签到,获得积分10
11秒前
粗犷的凌兰完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793