Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping

计算机科学 人工智能 梳理 计算机视觉 模式识别(心理学) 地图学 地理
作者
Nai‐Yu Pan,Teng‐Yi Huang,Jui‐Jung Yu,Hsu‐Hsia Peng,Tzu‐Chao Chuang,Yi‐Ru Lin,Hsiao‐Wen Chung,Ming‐Ting Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29373
摘要

Background The modified Look‐Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory‐induced misregistration to a given target image. Hypothesis Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory‐induced misregistration of MOLLI datasets. Study Type Retrospective. Population 1071 MOLLI datasets from 392 human participants. Field Strength/Sequence Modified Look‐Locker inversion recovery sequence at 3 T. Assessment A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor‐provided motion correction (MOCO) technique. Statistical Tests The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion‐corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed‐rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. Results The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor‐provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). Data Conclusion Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory‐induced heart displacements, may be beneficial for patients with difficulties in breath‐holding. Level of Evidence 3 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niuniu发布了新的文献求助10
1秒前
水星完成签到 ,获得积分10
1秒前
领导范儿应助生动的水池采纳,获得10
1秒前
1秒前
Akim应助爱学术的小冷采纳,获得10
1秒前
1秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
贺兰觿完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
王明磊完成签到 ,获得积分10
6秒前
领导范儿应助别说话采纳,获得10
6秒前
7秒前
25上岸完成签到,获得积分10
7秒前
元谷雪发布了新的文献求助10
8秒前
8秒前
王松桐完成签到,获得积分10
8秒前
Fliu完成签到,获得积分10
9秒前
9秒前
9秒前
77发布了新的文献求助10
9秒前
Nin完成签到,获得积分10
9秒前
ZZ发布了新的文献求助10
9秒前
zy发布了新的文献求助10
10秒前
只强完成签到,获得积分10
10秒前
研友_VZG7GZ应助keke采纳,获得10
10秒前
爱吃果冻发布了新的文献求助10
10秒前
11秒前
Orange应助梅雨季来信采纳,获得10
11秒前
元神发布了新的文献求助10
11秒前
科勒基侈发布了新的文献求助10
11秒前
13秒前
jewel9发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360