Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping

计算机科学 人工智能 梳理 计算机视觉 模式识别(心理学) 地图学 地理
作者
Nai‐Yu Pan,Teng‐Yi Huang,Jui‐Jung Yu,Hsu‐Hsia Peng,Tzu‐Chao Chuang,Yi‐Ru Lin,Hsiao‐Wen Chung,Ming‐Ting Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29373
摘要

Background The modified Look‐Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory‐induced misregistration to a given target image. Hypothesis Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory‐induced misregistration of MOLLI datasets. Study Type Retrospective. Population 1071 MOLLI datasets from 392 human participants. Field Strength/Sequence Modified Look‐Locker inversion recovery sequence at 3 T. Assessment A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor‐provided motion correction (MOCO) technique. Statistical Tests The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion‐corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed‐rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. Results The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor‐provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). Data Conclusion Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory‐induced heart displacements, may be beneficial for patients with difficulties in breath‐holding. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyizhuo完成签到,获得积分10
刚刚
1秒前
fu发布了新的文献求助10
1秒前
3秒前
baobao完成签到,获得积分10
3秒前
www发布了新的文献求助50
3秒前
3秒前
南汉高贵的陈皮完成签到 ,获得积分10
3秒前
mmm完成签到 ,获得积分10
3秒前
菠萝吹宝关注了科研通微信公众号
3秒前
希望天下0贩的0应助妮子采纳,获得10
4秒前
4秒前
4秒前
海珠完成签到 ,获得积分10
5秒前
5秒前
科研通AI5应助阳光映秋采纳,获得10
5秒前
happyboy2008完成签到,获得积分10
6秒前
7秒前
科研通AI6应助666采纳,获得10
8秒前
malistm发布了新的文献求助10
8秒前
Dean应助Shaw采纳,获得50
8秒前
小手一背怒发文章震惊上下三届完成签到,获得积分10
8秒前
8秒前
secret发布了新的文献求助10
9秒前
cetomacrogol完成签到,获得积分10
9秒前
10秒前
Hoshi发布了新的文献求助10
10秒前
尺素寸心发布了新的文献求助10
10秒前
爱吃泡芙完成签到,获得积分10
10秒前
自由妄想完成签到,获得积分10
10秒前
夏天的风完成签到,获得积分10
10秒前
沸沸关注了科研通微信公众号
10秒前
量子星尘发布了新的文献求助10
10秒前
苹果板栗完成签到,获得积分10
11秒前
12秒前
lxt完成签到,获得积分20
12秒前
rainlwang发布了新的文献求助10
12秒前
科研通AI2S应助tomato采纳,获得10
12秒前
Storm完成签到,获得积分10
13秒前
Lkydwzr发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062