亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping

计算机科学 人工智能 梳理 计算机视觉 模式识别(心理学) 地图学 地理
作者
Nai‐Yu Pan,Teng‐Yi Huang,Jui‐Jung Yu,Hsu‐Hsia Peng,Tzu‐Chao Chuang,Yi‐Ru Lin,Hsiao‐Wen Chung,Ming‐Ting Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29373
摘要

Background The modified Look‐Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory‐induced misregistration to a given target image. Hypothesis Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory‐induced misregistration of MOLLI datasets. Study Type Retrospective. Population 1071 MOLLI datasets from 392 human participants. Field Strength/Sequence Modified Look‐Locker inversion recovery sequence at 3 T. Assessment A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor‐provided motion correction (MOCO) technique. Statistical Tests The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion‐corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed‐rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. Results The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor‐provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). Data Conclusion Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory‐induced heart displacements, may be beneficial for patients with difficulties in breath‐holding. Level of Evidence 3 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jay完成签到,获得积分10
11秒前
空里叽哇完成签到,获得积分10
1分钟前
Hello应助杨杨采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
杨杨完成签到,获得积分20
1分钟前
犹豫绾绾完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
光能使者完成签到 ,获得积分10
1分钟前
杨杨发布了新的文献求助10
1分钟前
guozizi应助阿米尔盼盼采纳,获得100
1分钟前
浮游应助阿米尔盼盼采纳,获得10
1分钟前
烟花应助阿米尔盼盼采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
研友_89Nm7L发布了新的文献求助10
5分钟前
6分钟前
wrl2023完成签到,获得积分10
6分钟前
研友_89Nm7L完成签到,获得积分10
6分钟前
6分钟前
7分钟前
发呆员发布了新的文献求助100
7分钟前
量子星尘发布了新的文献求助10
7分钟前
万能图书馆应助发呆员采纳,获得100
7分钟前
aa完成签到,获得积分20
8分钟前
kklkimo完成签到,获得积分10
8分钟前
aa发布了新的文献求助50
8分钟前
zouzou完成签到,获得积分20
9分钟前
9分钟前
脑洞疼应助科研通管家采纳,获得10
9分钟前
Akim应助科研通管家采纳,获得10
9分钟前
10分钟前
10分钟前
10分钟前
lics发布了新的文献求助10
10分钟前
chenlc971125完成签到 ,获得积分10
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668640
关于积分的说明 14771517
捐赠科研通 4613414
什么是DOI,文献DOI怎么找? 2530181
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516