清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ultrahigh energy density solid state supercapacitor based on metal halide perovskite nanocrystal electrodes: Real-life applications

超级电容器 钙钛矿(结构) 材料科学 纳米晶 卤化物 电容 阳极 电极 纳米技术 光电子学 化学工程 无机化学 化学 物理化学 工程类
作者
Mir Sahanur Ali,Rashbihari Layek,Mir Sahidul Ali,Surajit Tudu,Kingshuk Dutta,Bhuman Gangopadhyay,Devdas Karmakar,Amit Mallik,Subrata Panda,Anupam Maiti,Debajyoti Ghoshal,Srikanta Karmakar,Pathik Kumbhakar,Dipankar Chattopadhyay
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:65: 107215-107215 被引量:14
标识
DOI:10.1016/j.est.2023.107215
摘要

Inorganic lead halide perovskite nanocrystals have now become an emerging material for modern nanodevice applications. But, the huge toxicity of lead to the ecosystem has limited its applications in modern technology. In this view, a large organic cation-based metal halide perovskite may be considered the most efficient supercapacitor electrode material. Here, a new type and high molecular organic cations based low-dimensional metal halide perovskite (LDMHP) nanocrystals (NCs) are synthesized by a chemical process and their performances as supercapacitor electrode is tested. An excellent charge storage capacity and especially the Tin (Sn)-based perovskite NCs showed a very high specific capacitance and energy density of ~1536 Fg−1 and ~213 Whkg−1 at a current density of 2.0 Ag−1, respectively. The calculated variable parameter (b) value from cyclic voltammetry showed that the total capacity of the Sn-based perovskite NCs electrode is controlled by capacitor-like behaviour. The Sn NCs also found to have a very high DC dielectric constant at room temperature, possibly responsible for their superior supercapacitor performance. A solid-state supercapacitor based on synthesized NCs was used for real-life applications of supplying sufficient power to light emitting diodes (LEDs) for a long time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得50
18秒前
Owen应助干净的映容采纳,获得10
31秒前
俊逸吐司完成签到 ,获得积分10
51秒前
老实的孤丹完成签到,获得积分10
56秒前
秋蚓完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
健康的大门完成签到,获得积分10
1分钟前
1分钟前
David发布了新的文献求助10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
在水一方应助David采纳,获得10
1分钟前
安琪琪完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
内向夕阳完成签到,获得积分20
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
林好人完成签到 ,获得积分10
2分钟前
搬砖的化学男完成签到 ,获得积分10
2分钟前
高高的从波完成签到,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分0
2分钟前
2分钟前
在水一方完成签到,获得积分0
2分钟前
整齐的忆彤完成签到,获得积分10
2分钟前
taster发布了新的文献求助10
2分钟前
bo完成签到 ,获得积分10
2分钟前
充电宝应助taster采纳,获得10
2分钟前
谭平完成签到 ,获得积分10
2分钟前
taster完成签到,获得积分10
2分钟前
hadfunsix完成签到 ,获得积分10
3分钟前
3分钟前
anan发布了新的文献求助10
3分钟前
单纯的小土豆完成签到 ,获得积分10
3分钟前
彩色映雁完成签到 ,获得积分10
3分钟前
orixero应助anan采纳,获得10
3分钟前
六一儿童节完成签到 ,获得积分0
3分钟前
千帆破浪完成签到 ,获得积分10
4分钟前
朴素亦绿完成签到,获得积分10
4分钟前
hyxu678完成签到,获得积分10
4分钟前
刘涵完成签到 ,获得积分10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569914
求助须知:如何正确求助?哪些是违规求助? 3991759
关于积分的说明 12356287
捐赠科研通 3664278
什么是DOI,文献DOI怎么找? 2019384
邀请新用户注册赠送积分活动 1053853
科研通“疑难数据库(出版商)”最低求助积分说明 941402