MTGL-ADMET: A Novel Multi-task Graph Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum Flow

计算机科学 任务(项目管理) 可解释性 嵌入 机器学习 人工智能 图形 多任务学习 图嵌入 理论计算机科学 管理 经济
作者
Bing-Xue Du,Yangsheng Xu,Siu‐Ming Yiu,Yu Huang,Jian‐Yu Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 85-103
标识
DOI:10.1007/978-3-031-29119-7_6
摘要

It is a vital step to evaluate drug-like compounds in terms of absorption, distribution, metabolism, excretion, and toxicity (ADMET) in drug design. Classical single-task learning based on abundant labels has achieved inspiring progress in predicting individual ADMET endpoints. Multi-task learning (MTL), having the low requirement of endpoint labels, can predict multiple ADMET endpoints simultaneously. Nonetheless, it is still an ongoing issue that the performance of existing MTL-based approaches depends on how appropriate participating tasks are. Furthermore, there is a need to elucidate what substructures are crucial to specific ADMET endpoints. To address these issues, this work constructs a Multi-Task Graph Learning framework for predicting multiple ADMET properties of drug-like small molecules (MTGL-ADMET) under a new paradigm of MTL, ‘one primary, multiple auxiliaries’. It first leverages the status theory and the maximum flow to select appropriate auxiliary tasks of a specific ADMET endpoint task. Then, it designs a novel primary-centered multi-task learning model, which consists of a task-shared atom embedding module, a task-specific molecular embedding module, a primary task-centered gating module, and a multi-task predictor. The comparison with state-of-the-art MTL-based methods demonstrates the superiority of MTGL-ADMET. More elaborate experiments validate its contributions, including the status theory-based auxiliary selection algorithm and the novel MTL architecture. Furthermore, a case study illustrates the interpretability of MTGL-ADMET by indicating crucial substructures w.r.t. the primary task. It’s anticipated that this work can boost pharmacokinetic and toxicity analysis in drug discovery. The code and data underlying this article are freely available at https://github.com/dubingxue/MTGL-ADMET .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XiangW完成签到,获得积分10
1秒前
BKEL发布了新的文献求助30
1秒前
2秒前
2秒前
武雨寒完成签到,获得积分20
2秒前
2秒前
乐乐完成签到,获得积分10
3秒前
隐形曼青应助落寞机器猫采纳,获得10
6秒前
yuk完成签到,获得积分20
7秒前
明捷发布了新的文献求助10
8秒前
wcli完成签到,获得积分10
8秒前
852应助武雨寒采纳,获得10
8秒前
艾欧比发布了新的文献求助10
9秒前
Wellnemo发布了新的文献求助10
9秒前
12秒前
LJ完成签到,获得积分10
13秒前
tramp应助1177采纳,获得10
14秒前
14秒前
珺儿完成签到,获得积分10
15秒前
15秒前
顾矜应助qin采纳,获得10
16秒前
Steven发布了新的文献求助10
18秒前
小马甲应助HY采纳,获得10
19秒前
上官若男应助零一采纳,获得10
19秒前
斯文败类应助淡淡采白采纳,获得10
20秒前
呜呜啦啦完成签到 ,获得积分10
21秒前
大个应助Molly采纳,获得10
21秒前
爱听歌的新烟完成签到,获得积分10
21秒前
犇骉发布了新的文献求助10
21秒前
大美女发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
刘宇完成签到,获得积分20
23秒前
SYLH应助17采纳,获得10
23秒前
顾矜应助丶夜落情泪采纳,获得30
25秒前
26秒前
26秒前
zz完成签到,获得积分20
26秒前
打打应助ZL采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430