MTGL-ADMET: A Novel Multi-task Graph Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum Flow

计算机科学 任务(项目管理) 可解释性 嵌入 机器学习 人工智能 图形 多任务学习 图嵌入 理论计算机科学 管理 经济
作者
Bing-Xue Du,Yangsheng Xu,Siu‐Ming Yiu,Yu Huang,Jian‐Yu Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 85-103
标识
DOI:10.1007/978-3-031-29119-7_6
摘要

It is a vital step to evaluate drug-like compounds in terms of absorption, distribution, metabolism, excretion, and toxicity (ADMET) in drug design. Classical single-task learning based on abundant labels has achieved inspiring progress in predicting individual ADMET endpoints. Multi-task learning (MTL), having the low requirement of endpoint labels, can predict multiple ADMET endpoints simultaneously. Nonetheless, it is still an ongoing issue that the performance of existing MTL-based approaches depends on how appropriate participating tasks are. Furthermore, there is a need to elucidate what substructures are crucial to specific ADMET endpoints. To address these issues, this work constructs a Multi-Task Graph Learning framework for predicting multiple ADMET properties of drug-like small molecules (MTGL-ADMET) under a new paradigm of MTL, ‘one primary, multiple auxiliaries’. It first leverages the status theory and the maximum flow to select appropriate auxiliary tasks of a specific ADMET endpoint task. Then, it designs a novel primary-centered multi-task learning model, which consists of a task-shared atom embedding module, a task-specific molecular embedding module, a primary task-centered gating module, and a multi-task predictor. The comparison with state-of-the-art MTL-based methods demonstrates the superiority of MTGL-ADMET. More elaborate experiments validate its contributions, including the status theory-based auxiliary selection algorithm and the novel MTL architecture. Furthermore, a case study illustrates the interpretability of MTGL-ADMET by indicating crucial substructures w.r.t. the primary task. It’s anticipated that this work can boost pharmacokinetic and toxicity analysis in drug discovery. The code and data underlying this article are freely available at https://github.com/dubingxue/MTGL-ADMET .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙琪马鹿完成签到,获得积分10
1秒前
科研通AI2S应助Parotodus采纳,获得50
4秒前
成就的夏之完成签到,获得积分10
7秒前
独家唱片完成签到,获得积分10
7秒前
alan完成签到,获得积分10
9秒前
15秒前
踏实天空发布了新的文献求助30
16秒前
17秒前
lsy完成签到,获得积分20
17秒前
18秒前
xiong xiong发布了新的文献求助10
20秒前
西西弗发布了新的文献求助10
21秒前
大模型应助阿文采纳,获得10
21秒前
22秒前
ahaaa发布了新的文献求助10
22秒前
23秒前
24秒前
28秒前
金金金金完成签到,获得积分10
29秒前
ponytail发布了新的文献求助10
29秒前
pass发布了新的文献求助10
30秒前
深情安青应助科研通管家采纳,获得10
33秒前
chen完成签到,获得积分10
33秒前
大个应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
pluto应助科研通管家采纳,获得50
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
西西弗完成签到 ,获得积分10
34秒前
34秒前
suan完成签到,获得积分10
36秒前
咚咚完成签到,获得积分20
40秒前
想早点退休完成签到,获得积分10
41秒前
iiomee完成签到 ,获得积分10
41秒前
43秒前
eno完成签到,获得积分10
44秒前
妮妮发布了新的文献求助20
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079