MTGL-ADMET: A Novel Multi-task Graph Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum Flow

计算机科学 任务(项目管理) 可解释性 嵌入 机器学习 人工智能 图形 多任务学习 图嵌入 理论计算机科学 管理 经济
作者
Bing-Xue Du,Yangsheng Xu,Siu‐Ming Yiu,Yu Huang,Jian‐Yu Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 85-103
标识
DOI:10.1007/978-3-031-29119-7_6
摘要

It is a vital step to evaluate drug-like compounds in terms of absorption, distribution, metabolism, excretion, and toxicity (ADMET) in drug design. Classical single-task learning based on abundant labels has achieved inspiring progress in predicting individual ADMET endpoints. Multi-task learning (MTL), having the low requirement of endpoint labels, can predict multiple ADMET endpoints simultaneously. Nonetheless, it is still an ongoing issue that the performance of existing MTL-based approaches depends on how appropriate participating tasks are. Furthermore, there is a need to elucidate what substructures are crucial to specific ADMET endpoints. To address these issues, this work constructs a Multi-Task Graph Learning framework for predicting multiple ADMET properties of drug-like small molecules (MTGL-ADMET) under a new paradigm of MTL, ‘one primary, multiple auxiliaries’. It first leverages the status theory and the maximum flow to select appropriate auxiliary tasks of a specific ADMET endpoint task. Then, it designs a novel primary-centered multi-task learning model, which consists of a task-shared atom embedding module, a task-specific molecular embedding module, a primary task-centered gating module, and a multi-task predictor. The comparison with state-of-the-art MTL-based methods demonstrates the superiority of MTGL-ADMET. More elaborate experiments validate its contributions, including the status theory-based auxiliary selection algorithm and the novel MTL architecture. Furthermore, a case study illustrates the interpretability of MTGL-ADMET by indicating crucial substructures w.r.t. the primary task. It’s anticipated that this work can boost pharmacokinetic and toxicity analysis in drug discovery. The code and data underlying this article are freely available at https://github.com/dubingxue/MTGL-ADMET .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵美娜发布了新的文献求助10
1秒前
里布书发布了新的文献求助10
1秒前
月亮上的垂耳兔完成签到,获得积分20
2秒前
3秒前
小透明应助libe采纳,获得30
3秒前
3秒前
ZM发布了新的文献求助30
3秒前
4秒前
诚心钢铁侠完成签到,获得积分10
4秒前
思源应助zhang采纳,获得10
4秒前
4秒前
Mandyan发布了新的文献求助10
6秒前
6秒前
lijiauyi1994发布了新的文献求助10
7秒前
彭于晏应助里布书采纳,获得10
8秒前
sxs关注了科研通微信公众号
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ccc12306发布了新的文献求助10
9秒前
熊熊完成签到 ,获得积分10
10秒前
wwwzx发布了新的文献求助10
10秒前
11秒前
ava发布了新的文献求助20
12秒前
陌上花开完成签到,获得积分0
13秒前
赘婿应助阿布与小佛采纳,获得10
13秒前
lijiauyi1994完成签到,获得积分10
14秒前
15秒前
16秒前
小艾同学完成签到 ,获得积分10
16秒前
cenghao发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
大模型应助积极的老鼠采纳,获得10
24秒前
24秒前
李爱国应助肖浩翔采纳,获得10
26秒前
28秒前
hzl发布了新的文献求助30
28秒前
小头暴富发布了新的文献求助10
29秒前
Perry完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595296
求助须知:如何正确求助?哪些是违规求助? 4680618
关于积分的说明 14816520
捐赠科研通 4649353
什么是DOI,文献DOI怎么找? 2535364
邀请新用户注册赠送积分活动 1503296
关于科研通互助平台的介绍 1469562