Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images

计算机科学 联营 冗余(工程) 卷积神经网络 特征(语言学) 人工智能 卷积(计算机科学) 特征提取 模式识别(心理学) 棱锥(几何) 人工神经网络 遥感 数据挖掘 光学 哲学 地质学 物理 操作系统 语言学
作者
Tao Lei,Xinzhe Geng,Hailong Ning,Zhiyong Lv,Maoguo Gong,Yaochu Jin,Asoke K. Nandi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:23
标识
DOI:10.1109/tgrs.2023.3261273
摘要

Deep convolutional neural networks have achieved much success in remote sensing image change detection (CD) but still suffer from two main problems. First, existing multi-scale feature fusion methods often employ redundant feature extraction and fusion strategies, which often leads to high computational costs and memory usage. Second, the regular attention mechanism in CD is difficult to model spatial-spectral features and generate 3D attention weights at the same time, ignoring the cooperation between spatial features and spectral features. To address the above issues, an efficient ultra-lightweight spatial-spectral feature cooperation network (USSFC-Net) is proposed for CD in this paper. The proposed USSFC-Net has two main advantages. First, a multi-scale decoupled convolution (MSDConv) is designed, which is clearly different from the popular atrous spatial pyramid pooling (ASPP) module and its variants since it can flexibly capture the multi-scale features of changed objects by using cyclic multi-scale convolution. Meanwhile, the design of MSDConv can greatly reduce the number of parameters and computational redundancy. Second, an efficient spatial-spectral feature cooperation strategy (SSFC) is introduced to obtain richer features. The SSFC differs from existing 2D attention mechanisms since it learns 3D spatial-spectral attention weights without adding any parameters. The experiments on three datasets for remote sensing image CD demonstrate that the proposed USSFC-Net achieves better CD accuracy than most convolutional neural networks-based methods and requires lower computational costs and fewer parameters, even it is superior to some Transformer-based methods. The code is available at https://github.com/SUST-reynole/USSFC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助感动归尘采纳,获得10
1秒前
orixero应助bluesky采纳,获得10
3秒前
6秒前
阿褚完成签到 ,获得积分10
8秒前
访文发布了新的文献求助10
10秒前
10秒前
Jasper应助十八采纳,获得10
11秒前
隐形曼青应助Ddnematode采纳,获得10
13秒前
14秒前
zg发布了新的文献求助10
15秒前
15秒前
ypeng完成签到,获得积分10
16秒前
Owen应助巧克力布朗尼采纳,获得30
17秒前
赘婿应助CRane采纳,获得10
19秒前
19秒前
19秒前
wanci应助迷你的心情采纳,获得10
19秒前
向语堂发布了新的文献求助10
19秒前
Cain应助幽芊细雨采纳,获得10
19秒前
20秒前
Dawn完成签到 ,获得积分10
20秒前
汉堡包应助访文采纳,获得10
23秒前
weiteman完成签到,获得积分10
24秒前
bluesky发布了新的文献求助10
25秒前
25秒前
xixihaha发布了新的文献求助10
26秒前
27秒前
life发布了新的文献求助10
29秒前
29秒前
yar给好运来的求助进行了留言
29秒前
知性的迎南关注了科研通微信公众号
30秒前
31秒前
32秒前
CRane发布了新的文献求助10
32秒前
我是老大应助wang5945采纳,获得10
34秒前
szy完成签到,获得积分10
34秒前
SmoonYK完成签到,获得积分10
35秒前
咚咚应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724