Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南北完成签到,获得积分10
1秒前
wjclear完成签到,获得积分10
1秒前
顾矜应助你好采纳,获得10
1秒前
Seven完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
小辉发布了新的文献求助10
3秒前
3秒前
Singularity应助YL采纳,获得10
3秒前
hoangphong完成签到,获得积分10
4秒前
zhanglj发布了新的文献求助10
4秒前
4秒前
4秒前
晴天完成签到,获得积分10
5秒前
5秒前
李爱国应助halona采纳,获得10
5秒前
GeminiWU完成签到,获得积分10
6秒前
dududu发布了新的文献求助10
7秒前
CZmike发布了新的文献求助10
7秒前
8秒前
汉堡包应助ainiowo采纳,获得10
8秒前
8秒前
小夏完成签到,获得积分10
8秒前
wondor1111完成签到,获得积分10
9秒前
实现所有完成签到 ,获得积分10
10秒前
香蕉觅云应助落寞幻翠采纳,获得10
10秒前
nature24发布了新的文献求助10
10秒前
桐桐应助dian采纳,获得10
10秒前
愉快的莹发布了新的文献求助10
10秒前
niyl完成签到,获得积分10
11秒前
ssrich发布了新的文献求助10
11秒前
科研通AI6应助浮云采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
刘行完成签到,获得积分10
11秒前
田様应助科研通管家采纳,获得10
12秒前
蜀安应助科研通管家采纳,获得30
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
qft发布了新的文献求助10
12秒前
所所应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791