亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史昊昊发布了新的文献求助10
刚刚
叽了咕噜完成签到,获得积分10
23秒前
JamesPei应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
44秒前
蛐蛐完成签到,获得积分20
47秒前
蛐蛐发布了新的文献求助10
51秒前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
桔子完成签到,获得积分10
1分钟前
uwasa完成签到,获得积分10
1分钟前
桔子发布了新的文献求助10
1分钟前
菲菲公主完成签到 ,获得积分10
1分钟前
an完成签到 ,获得积分10
1分钟前
今后应助康康采纳,获得30
1分钟前
bkagyin应助谭代涛采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
momo发布了新的文献求助10
2分钟前
2分钟前
康康完成签到,获得积分10
2分钟前
MMI完成签到 ,获得积分10
2分钟前
康康发布了新的文献求助30
2分钟前
2分钟前
ljx发布了新的文献求助10
2分钟前
maher完成签到 ,获得积分10
2分钟前
yu完成签到 ,获得积分10
2分钟前
3分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
3分钟前
3分钟前
谭代涛发布了新的文献求助10
3分钟前
3分钟前
真实的静枫完成签到,获得积分20
3分钟前
3分钟前
KY2022完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685530
关于积分的说明 14838588
捐赠科研通 4671137
什么是DOI,文献DOI怎么找? 2538247
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470924