Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:5
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粥粥发布了新的文献求助10
1秒前
李爱国应助lh采纳,获得10
1秒前
Hanny完成签到 ,获得积分10
3秒前
阿萌毛毛完成签到,获得积分10
3秒前
勇哥发布了新的文献求助10
4秒前
4秒前
cq220完成签到 ,获得积分10
4秒前
wufang发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
鹿剑心发布了新的文献求助10
5秒前
印染完成签到,获得积分10
6秒前
Robust发布了新的文献求助20
7秒前
lulyt完成签到 ,获得积分10
8秒前
两面性完成签到,获得积分10
9秒前
爆米花应助wufang采纳,获得10
10秒前
10秒前
粥粥完成签到,获得积分10
10秒前
兰0917完成签到,获得积分10
11秒前
13秒前
14秒前
Mathilda完成签到,获得积分10
15秒前
哈扎尔完成签到 ,获得积分10
16秒前
17秒前
Diudu完成签到,获得积分10
18秒前
tangtang发布了新的文献求助10
18秒前
18秒前
18秒前
Rita发布了新的文献求助10
18秒前
牙签撬地球完成签到,获得积分0
19秒前
19秒前
xiaofei发布了新的文献求助10
19秒前
共享精神应助zqy采纳,获得10
20秒前
21秒前
22秒前
bird完成签到,获得积分10
22秒前
flypipidan发布了新的文献求助10
22秒前
什么东西完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323