Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 工程类 材料科学 物理
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
NexusExplorer应助柠檬没我萌采纳,获得10
2秒前
孙成成完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助anfly采纳,获得10
3秒前
核桃发布了新的文献求助10
3秒前
4秒前
YUJIALING发布了新的文献求助10
4秒前
长安发布了新的文献求助10
4秒前
星辰大海应助wzq采纳,获得30
5秒前
7788完成签到 ,获得积分10
5秒前
ding应助韶华若锦采纳,获得10
6秒前
6秒前
6秒前
6秒前
SYLJ发布了新的文献求助10
7秒前
8秒前
bkagyin应助yyyyyy采纳,获得10
8秒前
浮游应助阿波罗采纳,获得10
8秒前
HTS完成签到,获得积分10
8秒前
梁业松发布了新的文献求助10
8秒前
安南发布了新的文献求助20
9秒前
whatever应助清塵采纳,获得20
9秒前
奇怪的茶叶菌完成签到,获得积分10
10秒前
10秒前
kaixiang发布了新的文献求助10
10秒前
Akim应助甜芝士耶采纳,获得10
10秒前
你好完成签到,获得积分10
10秒前
科研通AI2S应助肥波采纳,获得10
11秒前
爱始终年轻完成签到,获得积分10
11秒前
12秒前
王明宇发布了新的文献求助10
12秒前
keyanxiaoliu发布了新的文献求助10
13秒前
最好的我们完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879