Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdsxc发布了新的文献求助30
刚刚
刚刚
刚刚
XUXU发布了新的文献求助10
刚刚
万能图书馆应助Young_Lee采纳,获得10
1秒前
滴滴滴完成签到,获得积分10
1秒前
简书完成签到,获得积分10
1秒前
来来来完成签到,获得积分10
2秒前
Aye驳回了Lucas应助
2秒前
坚强的赛凤完成签到,获得积分10
2秒前
3秒前
3秒前
Sunbird发布了新的文献求助10
3秒前
工藤新一发布了新的文献求助10
3秒前
丘比特应助rover采纳,获得10
3秒前
4秒前
体贴洋葱完成签到,获得积分10
4秒前
Owen应助简书采纳,获得10
5秒前
Ericlibrave完成签到 ,获得积分10
5秒前
shenyanlei完成签到,获得积分10
5秒前
5秒前
洁净砖头完成签到,获得积分10
5秒前
5秒前
章鱼哥发布了新的文献求助10
5秒前
5秒前
小飞完成签到,获得积分10
5秒前
xxxxxxxxx完成签到,获得积分10
5秒前
今后应助神勇听荷采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
CaoZH完成签到,获得积分10
6秒前
万能图书馆应助fddd采纳,获得10
6秒前
爆米花应助月圆夜采纳,获得10
7秒前
Gang完成签到,获得积分0
7秒前
善学以致用应助任晨彬采纳,获得10
7秒前
科目三应助Regina采纳,获得10
7秒前
wanci应助李成博采纳,获得30
7秒前
7秒前
浮游应助蜘蛛侠采纳,获得10
8秒前
SciGPT应助鱼摆摆摆摆采纳,获得10
8秒前
顾矜应助charint采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685