Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助晴子采纳,获得10
刚刚
浮游应助长度2到采纳,获得10
1秒前
小宇发布了新的文献求助10
1秒前
QIQI发布了新的文献求助10
2秒前
梦思遗落完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
zyx完成签到,获得积分10
3秒前
简7发布了新的文献求助30
3秒前
佐zzz发布了新的文献求助10
4秒前
lxl发布了新的文献求助10
5秒前
5秒前
上官若男应助ZY采纳,获得10
5秒前
6秒前
7秒前
热情的远锋完成签到 ,获得积分10
8秒前
8秒前
浮游应助晴子采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
兰兰不懒发布了新的文献求助10
12秒前
Hello应助佐zzz采纳,获得10
12秒前
13秒前
老实的斌完成签到 ,获得积分10
14秒前
2425完成签到,获得积分10
15秒前
田様应助专一的戒指采纳,获得10
16秒前
fengwanru发布了新的文献求助10
16秒前
维尼熊完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
铅笔刀完成签到,获得积分10
21秒前
淡淡萍完成签到,获得积分10
21秒前
yilia完成签到,获得积分10
22秒前
丘比特应助guo采纳,获得30
23秒前
JW完成签到,获得积分10
25秒前
huihui完成签到,获得积分10
27秒前
快乐的寄容完成签到 ,获得积分10
30秒前
32秒前
32秒前
真君山山长完成签到,获得积分10
34秒前
MYunn完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700