Smart Miniature Mass Spectrometer Enabled by Machine Learning

质谱法 化学 分光计 纳米技术 航空航天工程 色谱法 光学 物理 工程类 材料科学
作者
Yanzuo Jiang,Di Huang,Hongjia Zhang,Ting Jiang,Wei Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 5976-5984 被引量:12
标识
DOI:10.1021/acs.analchem.2c05714
摘要

Similar to smartphones, smart or automatic level is also a critical feature for a miniature mass spectrometer. Compared to large-scale instruments, miniature mass spectrometers often have a lower mass resolution and larger mass drift, making it challenging to identify molecules with close mass–charge ratios. In this work, a miniature mass spectrometer (the Brick-V model) was combined with intelligent algorithms to realize rapid and accurate identification. This Brick-V mass spectrometer developed in our lab was equipped with a vacuum ultraviolet photoionization (VUV-PI) source, which ionizes volatile organic compounds (VOCs) with minor fragments. Machine learning would be especially helpful when analyzing samples with multiple characteristic peaks. Four machine learning algorithms were tested and compared in terms of precision, recall, balanced F score (F1 score), and accuracy. After optimization, the multilayer perceptron (MLP) method was selected and first applied for the automatic identification and differentiation of ten different fruits. By recognizing the pattern of multiple VOCs diffused from fruits, an average accuracy of 97% was achieved. This system was further applied to determine the freshness of strawberries, and strawberry picking at different times (especially during the first 24 h at room temperature of winter) could be well discriminated. After building a database of 63 VOCs, a rapid method to identify compounds in the database was established. In this method, molecular ions, fragment ions, and dimer ions in the full mass spectrum were all utilized in the machine learning program. A satisfactory prediction accuracy for the 63 VOCs could be achieved (>99%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情新蕾发布了新的文献求助10
1秒前
Owen应助Shawn采纳,获得10
1秒前
1秒前
LY发布了新的文献求助10
2秒前
EwhenQ发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
VK2801发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
科研通AI6.1应助科研通管家采纳,获得100
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
111完成签到,获得积分10
4秒前
mm完成签到,获得积分10
4秒前
今后应助hahaer采纳,获得10
4秒前
高贵的冰旋完成签到 ,获得积分10
5秒前
平平完成签到,获得积分10
5秒前
5秒前
123567完成签到 ,获得积分10
5秒前
科目三应助猹a采纳,获得10
7秒前
fengge完成签到,获得积分10
7秒前
ZML314发布了新的文献求助10
7秒前
义气幻竹完成签到,获得积分20
8秒前
斯文败类应助多情新蕾采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851