Self-Supervised Learning of Depth and Ego-Motion for 3D Perception in Human Computer Interaction

人工智能 计算机科学 计算机视觉 深度学习 卷积神经网络 杠杆(统计) 深度知觉 RGB颜色模型 感知 神经科学 生物
作者
Shanbao Qiao,Naixue Xiong,Yongbin Gao,Zhijun Fang,Wenjun Yu,Juan Zhang,Xiaoyan Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:4
标识
DOI:10.1145/3588571
摘要

3D perception of depth and ego-motion is of vital importance in intelligent agent and Human Computer Interaction (HCI) tasks, such as robotics and autonomous driving. There are different kinds of sensors that can directly obtain 3D depth information. However, the commonly used Lidar sensor is expensive, and the effective range of RGB-D cameras is limited. In the field of computer vision, researchers have done a lot of work on 3D perception. While traditional geometric algorithms require a lot of manual features for depth estimation, Deep Learning methods have achieved great success in this field. In this work, we proposed a novel self-supervised method based on Vision Transformer (ViT) with Convolutional Neural Network (CNN) architecture, which is referred to as ViT-Depth . The image reconstruction losses computed by the estimated depth and motion between adjacent frames are treated as supervision signal to establish a self-supervised learning pipeline. This is an effective solution for tasks that need accurate and low-cost 3D perception, such as autonomous driving, robotic navigation, 3D reconstruction, and so on. Our method could leverage both the ability of CNN and Transformer to extract deep features and capture global contextual information. In addition, we propose a cross-frame loss that could constrain photometric error and scale consistency among multi-frames, which lead the training process to be more stable and improve the performance. Extensive experimental results on autonomous driving dataset demonstrate the proposed approach is competitive with the state-of-the-art depth and motion estimation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
1秒前
初吻还在完成签到,获得积分10
2秒前
MADKAI发布了新的文献求助10
2秒前
Asss完成签到,获得积分10
2秒前
2秒前
时光友岸完成签到,获得积分10
3秒前
4秒前
昭昭完成签到,获得积分10
4秒前
niu1完成签到,获得积分10
5秒前
铃兰完成签到,获得积分10
5秒前
尘尘完成签到,获得积分10
5秒前
6秒前
yan完成签到,获得积分20
6秒前
6秒前
小鹿斑比完成签到 ,获得积分10
7秒前
洛洛完成签到 ,获得积分10
7秒前
浮华乱世完成签到 ,获得积分10
7秒前
otaro完成签到,获得积分10
7秒前
万能图书馆应助zsqqqqq采纳,获得10
7秒前
领导范儿应助zhonghbush采纳,获得10
8秒前
reck发布了新的文献求助10
8秒前
舒服的鱼完成签到 ,获得积分10
8秒前
8秒前
WLL完成签到,获得积分10
8秒前
8秒前
罗mian发布了新的文献求助10
8秒前
轻松的雨旋完成签到,获得积分10
9秒前
星辰大海应助小宇采纳,获得10
9秒前
啦啦啦发布了新的文献求助10
10秒前
zxk完成签到,获得积分10
10秒前
10秒前
11秒前
xjx完成签到 ,获得积分10
11秒前
酷炫大树发布了新的文献求助10
12秒前
orixero应助凶狠的盼柳采纳,获得10
12秒前
阿翼完成签到 ,获得积分10
12秒前
妮露的修狗完成签到,获得积分10
12秒前
乐园完成签到,获得积分10
12秒前
开朗满天完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672