已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Learning of Depth and Ego-Motion for 3D Perception in Human Computer Interaction

人工智能 计算机科学 计算机视觉 深度学习 卷积神经网络 杠杆(统计) 深度知觉 RGB颜色模型 感知 生物 神经科学
作者
Shanbao Qiao,Naixue Xiong,Yongbin Gao,Zhijun Fang,Wenjun Yu,Juan Zhang,Xiaoyan Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:4
标识
DOI:10.1145/3588571
摘要

3D perception of depth and ego-motion is of vital importance in intelligent agent and Human Computer Interaction (HCI) tasks, such as robotics and autonomous driving. There are different kinds of sensors that can directly obtain 3D depth information. However, the commonly used Lidar sensor is expensive, and the effective range of RGB-D cameras is limited. In the field of computer vision, researchers have done a lot of work on 3D perception. While traditional geometric algorithms require a lot of manual features for depth estimation, Deep Learning methods have achieved great success in this field. In this work, we proposed a novel self-supervised method based on Vision Transformer (ViT) with Convolutional Neural Network (CNN) architecture, which is referred to as ViT-Depth . The image reconstruction losses computed by the estimated depth and motion between adjacent frames are treated as supervision signal to establish a self-supervised learning pipeline. This is an effective solution for tasks that need accurate and low-cost 3D perception, such as autonomous driving, robotic navigation, 3D reconstruction, and so on. Our method could leverage both the ability of CNN and Transformer to extract deep features and capture global contextual information. In addition, we propose a cross-frame loss that could constrain photometric error and scale consistency among multi-frames, which lead the training process to be more stable and improve the performance. Extensive experimental results on autonomous driving dataset demonstrate the proposed approach is competitive with the state-of-the-art depth and motion estimation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情安卉发布了新的文献求助10
1秒前
Orange应助FrozNineTivus采纳,获得10
4秒前
Captain发布了新的文献求助10
5秒前
斯文败类应助xrzsxiaoli采纳,获得10
7秒前
dong应助gaoyayaaa采纳,获得10
8秒前
9秒前
HHYYAA完成签到,获得积分10
9秒前
HHYYAA发布了新的文献求助10
12秒前
Captain完成签到,获得积分10
15秒前
彭于晏应助落叶听风笑采纳,获得10
16秒前
俊逸如风发布了新的文献求助10
18秒前
18秒前
gxl完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
秀丽的天奇完成签到,获得积分10
20秒前
李健应助13508104971采纳,获得10
20秒前
22秒前
吴海娇发布了新的文献求助10
24秒前
25秒前
香蕉觅云应助RC_Wang采纳,获得10
25秒前
25秒前
ionicliquids发布了新的文献求助10
26秒前
Hunter完成签到,获得积分10
27秒前
27秒前
研友_VZG7GZ应助风清扬采纳,获得10
28秒前
在水一方应助absorb采纳,获得10
29秒前
29秒前
大个应助MEIMEI采纳,获得10
30秒前
30秒前
31秒前
Hunter发布了新的文献求助10
32秒前
九思发布了新的文献求助10
33秒前
34秒前
minya完成签到,获得积分10
34秒前
默默洋葱发布了新的文献求助10
35秒前
36秒前
38秒前
白樱恋曲发布了新的文献求助10
40秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021