Self-Supervised Learning of Depth and Ego-Motion for 3D Perception in Human Computer Interaction

人工智能 计算机科学 计算机视觉 深度学习 卷积神经网络 杠杆(统计) 深度知觉 RGB颜色模型 感知 生物 神经科学
作者
Shanbao Qiao,Naixue Xiong,Yongbin Gao,Zhijun Fang,Wenjun Yu,Juan Zhang,Xiaoyan Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:4
标识
DOI:10.1145/3588571
摘要

3D perception of depth and ego-motion is of vital importance in intelligent agent and Human Computer Interaction (HCI) tasks, such as robotics and autonomous driving. There are different kinds of sensors that can directly obtain 3D depth information. However, the commonly used Lidar sensor is expensive, and the effective range of RGB-D cameras is limited. In the field of computer vision, researchers have done a lot of work on 3D perception. While traditional geometric algorithms require a lot of manual features for depth estimation, Deep Learning methods have achieved great success in this field. In this work, we proposed a novel self-supervised method based on Vision Transformer (ViT) with Convolutional Neural Network (CNN) architecture, which is referred to as ViT-Depth . The image reconstruction losses computed by the estimated depth and motion between adjacent frames are treated as supervision signal to establish a self-supervised learning pipeline. This is an effective solution for tasks that need accurate and low-cost 3D perception, such as autonomous driving, robotic navigation, 3D reconstruction, and so on. Our method could leverage both the ability of CNN and Transformer to extract deep features and capture global contextual information. In addition, we propose a cross-frame loss that could constrain photometric error and scale consistency among multi-frames, which lead the training process to be more stable and improve the performance. Extensive experimental results on autonomous driving dataset demonstrate the proposed approach is competitive with the state-of-the-art depth and motion estimation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
dog完成签到 ,获得积分10
1秒前
呢n完成签到 ,获得积分10
1秒前
2秒前
2秒前
小美发布了新的文献求助10
2秒前
2秒前
重要的听白完成签到,获得积分10
2秒前
乐观的海发布了新的文献求助10
2秒前
张立敏发布了新的文献求助10
2秒前
善学以致用应助kiwi采纳,获得10
3秒前
3秒前
4秒前
怕黑的猕猴桃完成签到,获得积分10
4秒前
5秒前
5秒前
汤壳西姆发布了新的文献求助10
5秒前
baobao完成签到,获得积分10
6秒前
Joshua发布了新的文献求助10
6秒前
科研狗发布了新的文献求助10
7秒前
鸭不抗揍完成签到 ,获得积分10
7秒前
7秒前
万里完成签到 ,获得积分10
7秒前
7秒前
yt完成签到,获得积分10
7秒前
9528保护我完成签到,获得积分10
8秒前
沉默曼安发布了新的文献求助10
8秒前
8秒前
9秒前
憨憨完成签到,获得积分10
10秒前
123566完成签到,获得积分10
10秒前
10秒前
小鹿完成签到,获得积分10
11秒前
11秒前
哈哈完成签到,获得积分10
11秒前
学问发布了新的文献求助10
11秒前
呆萌的书桃完成签到,获得积分10
11秒前
杰杰发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143