Self-Supervised Learning of Depth and Ego-Motion for 3D Perception in Human Computer Interaction

人工智能 计算机科学 计算机视觉 深度学习 卷积神经网络 杠杆(统计) 深度知觉 RGB颜色模型 感知 神经科学 生物
作者
Shanbao Qiao,Naixue Xiong,Yongbin Gao,Zhijun Fang,Wenjun Yu,Juan Zhang,Xiaoyan Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-21 被引量:4
标识
DOI:10.1145/3588571
摘要

3D perception of depth and ego-motion is of vital importance in intelligent agent and Human Computer Interaction (HCI) tasks, such as robotics and autonomous driving. There are different kinds of sensors that can directly obtain 3D depth information. However, the commonly used Lidar sensor is expensive, and the effective range of RGB-D cameras is limited. In the field of computer vision, researchers have done a lot of work on 3D perception. While traditional geometric algorithms require a lot of manual features for depth estimation, Deep Learning methods have achieved great success in this field. In this work, we proposed a novel self-supervised method based on Vision Transformer (ViT) with Convolutional Neural Network (CNN) architecture, which is referred to as ViT-Depth . The image reconstruction losses computed by the estimated depth and motion between adjacent frames are treated as supervision signal to establish a self-supervised learning pipeline. This is an effective solution for tasks that need accurate and low-cost 3D perception, such as autonomous driving, robotic navigation, 3D reconstruction, and so on. Our method could leverage both the ability of CNN and Transformer to extract deep features and capture global contextual information. In addition, we propose a cross-frame loss that could constrain photometric error and scale consistency among multi-frames, which lead the training process to be more stable and improve the performance. Extensive experimental results on autonomous driving dataset demonstrate the proposed approach is competitive with the state-of-the-art depth and motion estimation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卡司发布了新的文献求助10
2秒前
Yilam完成签到,获得积分10
2秒前
酷波er应助Yo采纳,获得10
5秒前
子车茗应助DQY采纳,获得10
5秒前
5秒前
菠萝炒蛋加饭完成签到 ,获得积分10
6秒前
俏皮鸵鸟发布了新的文献求助10
6秒前
7秒前
nt完成签到,获得积分10
7秒前
昏睡的绿海完成签到,获得积分10
8秒前
烟花应助卡卡西采纳,获得10
9秒前
10秒前
10秒前
12秒前
开心完成签到 ,获得积分10
13秒前
14秒前
15秒前
楚寅完成签到 ,获得积分10
25秒前
26秒前
26秒前
tooy完成签到 ,获得积分10
28秒前
儒雅八宝粥完成签到 ,获得积分10
29秒前
29秒前
SciGPT应助Nana采纳,获得10
31秒前
风中少年发布了新的文献求助10
32秒前
32秒前
啊哈哈哈哈完成签到,获得积分10
32秒前
LiaoPiggg发布了新的文献求助10
32秒前
33秒前
33秒前
求助完成签到 ,获得积分10
34秒前
淡淡冬瓜完成签到,获得积分10
36秒前
要减肥明雪完成签到,获得积分10
36秒前
37秒前
迷宫废墟发布了新的文献求助10
38秒前
38秒前
千山暮雪发布了新的文献求助10
39秒前
TT完成签到 ,获得积分10
39秒前
Lucas应助Nana采纳,获得10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578